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Abstract

We describe how to use Schoenberg’s theorem for a radial kernel combined with existing
bounds on the approximation error functions for Gaussian kernels to obtain a bound on the
approximation error function for the radial kernel. The result is applied to the exponential
kernel and Student’s kernel. To establish these results we develop a general theory regarding
mixtures of kernels. We analyze the reproducing kernel Hilbert space (RKHS) of the mixture in
terms of the RKHS’s of the mixture components and prove a type of Jensen inequality between
the approximation error function for the mixture and the approximation error functions of the
mixture components.

1 Introduction

Gaussian kernels have been popular in Learning Theory for some time. However it is only recently
that they have been shown to allow efficient learning. For example, Steinwart et. al. [32, 33, 30, 31]
show that one can achieve fast learning rates with the Gaussian kernels. See [29] for a more complete
history. Moreover, efficient learning algorithms have been developed for arbitrary kernels in e. g.
[17, 16, 20]. However, Gaussian kernels can suffer numerically in practice when the underlying
space is large or the kernel parameter t is large since the function e−t2‖x−x′‖2

may be evaluated by
the computer as having only values 0 and 1. Consequently, other radial kernels such as e−α‖x−x′‖

or (1 + m−1‖x − x′‖2
2)

−α are often used. However, the above mentioned analysis of learning rates
has yet to be developed for these kernels. One reason for this is that we have no good bounds on
their approximation error properties. In this paper, we will in particular provide bounds on the
so-called approximation error functions, defined in the papers mentioned above, for a large class of
radial kernels which includes the above examples.

In practice it appears advantageous to have radial functions which are kernels independent of
the dimension d of the underlying space R

d. Due to theorems of Bernstein [8, 35], Bochner [9],
Schoenberg [25], and Moore [22], this set of kernels, which we denote by Krad, corresponds to the
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set of finite Borel measures on R
+ through an integral representation in terms of Gaussian kernels.

That is, denote R
+ := [0,∞) and let kt(x, x′) = e−t2‖x−x′‖2

, t ∈ R
+ denote the family of Gaussian

kernels. Then k ∈ Krad if and only if there is a finite Borel measure μ on R
+ such that for all d ≥ 1

we have
k(x, x′) =

∫
R+

kt(x, x′)dμ(t), x, x′ ∈ R
d . (1)

See Theorem 1.1 below for a precise statement. Henceforth we will use the term ”radial kernel” to
refer to elements of Krad. Micchelli et. al. [21] have used the integral representation (1) to show that
all nonconstant radial kernels are universal for all compact subsets, in the sense that their RKHSs
are dense in the Banach space C(X) of continuous functions. However, to obtain learning rates
Steinwart et. al. [32, 33, 30, 31] utilized the important concept of the approximation error function
Ak(λ) corresponding to the kernel k defined as follows: Let R be a continuous convex function on
the reproducing kernel Hilbert space Hk associated with the kernel k and define the regularized
functions by Rλ,k(f) := λ‖f‖2

Hk
+ R(f), λ ≥ 0. Also let R∗

λ,k := inff∈Hk
Rλ,k(f) denote

their minimum values (i. e. greatest lower bounds). The approximation error function defined
by Ak(λ) := R∗

λ,k − R∗
0,k measures how minimizing the regularized function Rλ,k approximately

minimizes the function R = R0,k(f). Now suppose that we consider a radial kernel k and ask how
the representation (1) can be used to provide bounds for its approximation error function Ak(λ)
in terms of bounds on the approximation error functions Akt(λ) for the Gaussian kernels and the
measure μ. Indeed, our main result Corollary 3.5 is that for a radial kernel k =

∫
ktdμ(t) we have

Ak(λ) ≤
∫

R+

Akt(λ)dμ(t) , λ ≥ 0. (2)

Using existing bounds on the approximation error functions for Gaussian kernels, this result is then
used to obtain bounds on the approximation error functions for the two radial kernels mentioned
above.

Most of the results we present are relatively easy to obtain for finite sums of kernels. However,
obtaining them for radial kernels using the integral representation (1) requires that a large part of
the paper is concerned with the technical issues of measure and integration theory. To prove the
main result (2) we first consider how can we represent the reproducing kernel Hilbert space (RKHS)
Hk of the kernel k =

∫
ktdμ(t) in terms of the Gaussian RKHSs Hkt , t ≥ 0 and the representing

measure μ. Recall that [3] shows that if k = k1 + k2 is the sum of two kernels on X that k is a
kernel and its corresponding RKHS Hk has the representation Hk = {f1 + f2|f1 ∈ Hk1 , f2 ∈ Hk2}
with norm defined by

‖f‖2
Hk

= inf
f=f1+f2

f1∈Hk1
, f2∈Hk2

(
‖f1‖2

Hk1
+ ‖f2‖2

Hk2

)
.

In addition, it is easy to show that for α > 0 we have that Hαk = Hk and that ‖αf‖2
Hαk

= α‖f‖2
Hk

so that for all α ∈ [0, 1] we have

‖f‖2
Hαk1+(1−α)k2

= inf
f=αf1+(1−α)f2

f1∈Hk1
, f2∈Hk2

(
α‖f1‖2

Hk1
+ (1 − α)‖f2‖2

Hk2

)
, f ∈ Hαk1+(1−α)k2

, (3)

suggesting that integral versions of these representations may be available.
Now let k1 and k2 be two kernels and let R be a continuous convex function on Hk1 +Hk2 such

that infHk1
R = infHk2

R. Then we can show

Aαk1+(1−α)k2
(λ) ≤ αAk1(λ) + (1 − α)Ak2(λ). (4)
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That is, in a certain sense, the function k �→ Ak(λ) is a convex function.
Inequalities (3) and (4) suggest the existence of integral versions of these inequalities, which may

then be used to analyze radial kernels, As a consequence of a general theory developed in this paper,
Corollary 3.5 shows that we do indeed posses the desired integral inequalities for radial kernels.
Roughly stated, if k is a radial kernel and μ is its representing measure so that k = kμ := Et∼μkt

where Et∼μ denotes integration we obtain Hkμ = {Et∼μft, ft ∈ Hkt ,∀t ∈ T},

‖f‖2
kμ

= inf
f=Et∼μft

ft∈Hkt
,∀t∈T

Et∼μ‖ft‖2
kt

,

and the approximation error function inequality (2).
Before we proceed, we follow [29] to fix terminology, set notation, and formally state the integral

representation theorem we use for radial kernels. Let X be a nonempty set. Then a bivariate
function k : X × X → R will be called a kernel if there exists a Hilbert space H and a map
Φ : X → H such that, for all x, x′ ∈ X, we have k(x, x′) = 〈Φ(x), Φ(x′)〉. H is called a feature
space and Φ is called a feature map for k. Moreover, a Hilbert space H of real-valued functions
on X is called the reproducing kernel Hilbert space (RKHS) corresponding to a bivariate function
k : X×X → R if k(·, x) ∈ H for all x ∈ X, and we have the reproducing property f(x) = 〈f, k(·, x)〉
for all f ∈ H and x ∈ X. It is well known (see e.g. [29, Ch. 4]) that there exists a bijection between
kernels and RKHSs although a kernel has many feature spaces in general. We denote the RKHS
associated to the kernel k by Hk. Let us denote by Et∼μ the process of integration with respect to
the measure μ over a measurable space T . Moreover, for kernels, Et∼μkt means that the integration
is defined pointwise by kμ(x, x′) := Et∼μkt(x, x′), x, x′ ∈ X. A function g : R

+ → R is called
completely monotone if

(−1)k dk

dtk
g(t) ≥ 0, t > 0

lim
t↓0

g(t) = g(0) .

In the representation theorem below we consider the family G of Gaussian kernels

G :=
(
kt

)
t∈R+ , (5)

where for t ≥ 0 the Gaussian kernel kt is defined by kt(x, x′) := e−t2‖x−x′‖2
, x, x′ ∈ R

d.

Theorem 1.1 Consider a real function g : R
+ → R and its corresponding radial function

kg(x, x′) := g(‖x − x′‖), x, x′ ∈ R
d.

Then the following assertions are equivalent:

i) kg is a kernel for all dimensions d ≥ 1.

ii) There exists a finite Borel measure μ on R
+ such that kg = Et∼μkt.

iii) g(
√· ) is completely monotone.
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2 RKHS of mixtures

Before we proceed to analyze the RKHS corresponding to a mixture of kernels in terms of its
mixture components, let us recall some basic facts about RKHSs. Suppose a kernel k has a feature
map Φ : X → H to a Hilbert space H. Let F(X) denote the set of real-valued functions on X and
consider the mapping Φ∗ : H → F(X) defined by(

Φ∗g
)
(x) := 〈g, Φ(x)〉H , x ∈ X, g ∈ H.

Where no confusion should arise, we write Hk for the RKHS Hk(X) associated with the kernel k.
Then by [29, Thm. 4.21] we have that the RKHS Hk corresponding to k can be described as

Hk = {Φ∗g : g ∈ H}, (6)

‖f‖2
Hk

= inf
g∈H :f=Φ∗g

‖g‖2
H , (7)

and that Φ∗ : H → Hk is a metric surjection, that is Φ∗B̊(H) = B̊(Hk), where B̊(·) denotes the
open unit ball of its argument. Consequently, if Φ∗ is injective it follows that it is an isometric
isomorphism. Furthermore, let PΦ : H → ker(Φ∗)⊥ ⊂ H be the orthogonal projection onto the
orthogonal complement of the null space ker(Φ∗) of Φ∗. Let us observe that the proof of [29,
Thm. 4.21] proves that the infimum in (7) is actually attained, that is

‖f‖2
Hk

= min
g∈H

f=Φ∗g

‖g‖2
H , (8)

and that the minimum is attained at
ĝ := PΦg (9)

for any g that satisfies Φ∗g = f.
To analyze the RKHS corresponding to a mixture of kernels in terms of its mixture components,

we essentially follow the proof of [3, Sec. 6] for sums. However, due to the infinite nature of the
mixtures we need to utilize some measurability and integrability considerations in the context
of Lebesgue-Bochner spaces. To that end, consider a measurable space (T, Σ) equipped with a
measure μ. In this paper, we will only consider nontrivial measures. For a Banach space E, a
function f : T → E is said to be E-measurable if it is the pointwise limit of a sequence of step
functions. Let H denote a Hilbert space and consider equivalence classes of H-measurable functions,
where functions are equivalent if they differ only on sets of μ–measure zero. The Lebesgue-Bochner
space L2(μ,H) consists of those equivalence classes such that the square of the norm

‖f‖2
L2(μ,H) := Et∼μ‖f(t)‖2

H

is finite. L2(μ,H) is known to be complete [10], the proof being essentially the same as for real
Lebesgue space L2(μ). Therefore it is a Hilbert space. We will also need the following notions.
For a Banach space E a function f : T → E is said to be weakly E-measurable if t �→ 〈b∗, f(t)〉
is measurable for all b∗ ∈ E∗. Clearly an E-measurable function is weakly E-measurable. On
the other hand, by Petti’s Theorem (see e.g. [13, Prop. 1.20, Pg. 9]), if f : T → E is weakly E-
measurable and has separable range then it is E-measurable. In addition, let E1 and E2 be Banach
spaces and denote by L(E1, E2) the Banach space of bounded linear operators from E1 to E2. Then
we say that a function f : T → L(E1, E2) is simply E2-measurable if t �→ f(t)b is E2-measurable
for all b ∈ E1.
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In this paper we will be concerned with a family (kt)t∈T of kernels and their mixtures kμ :=
Et∼μkt corresponding to finite measures μ. We use the notation Ht := Hkt and Hμ := Hkμ . Since we
never consider the trivial measure μ = 0 no confusion should arise as to the meaning of H0 := Hk0 .
Roughly stated, our main result of this section, Theorem 2.2, states that if, corresponding to the
family of kernels, we have a family (Φt)t∈T of feature maps Φt : X → H to a common feature space
H such that the induced map Φ : T × X → H defined by Φ(t, x) := Φt(x) has some regularity,
then the square norm of Hμ is related to a μ mixture of the square of the Ht norms of the function’s
mixture components. Namely we have an integral version of (3) mentioned in the introduction.
However, before we prove this theorem we establish a preparatory lemma of independent interest.
Recall that a Suslin space is a continuous image of a Polish space.

Lemma 2.1 Let T be a measurable space, X be a Suslin space equipped with its Borel σ-algebra, and
H a separable Hilbert space. Consider a family (Φt)t∈T of maps Φt : X → H and the corresponding
family (PΦt)t∈T of orthogonal projections PΦt : H → H onto the orthogonal complement of the
null space ker(Φ∗

t ). Suppose that the map Φ : T × X → H defined by Φ(t, x) := Φt(x) is weakly
H-measurable. Then the map t �→ PΦt is simply H-measurable.

We can now state our main theorem that describes the RKHS of mixtures.

Theorem 2.2 Let (T, Σ, μ) be a measure space and consider a family (kt)t∈T of reproducing kernels
on X equipped with a family (Φt)t∈T of feature maps Φt : X → H to a common feature space H.
For each x ∈ X consider the map Ψx : T → H defined by Ψx(t) := Φt(x). Suppose that for each
x ∈ X we have Ψx ∈ L2(μ,H). Then the function t �→ kt(x, x′) is integrable for all x, x′ ∈ X and
the map Ψ : X �→ L2(μ,H) defined by x �→ Ψx is a feature map for kμ := Et∼μkt. In addition, we
have

Hμ = {Ψ∗f : f ∈ L2(μ,H)}. (10)

and
‖f‖2

Hμ
= min

f∈L2(μ,H)
f=Ψ∗f

‖f‖2
L2(μ,H) , (11)

where (
Ψ∗f

)
(x) = Et∼μ

((
Φ∗

t f(t)
)
(x)

)
= Et∼μ

〈
f(t), Φt(x)

〉
H. (12)

Moreover, let X be a Suslin space equipped with its Borel σ-algebra, H be a separable Hilbert space,
and suppose the map Φ : T ×X → H defined by Φ(t, x) := Φt(x) is weakly H-measurable. Then, in
addition to (11), we have

‖f‖2
Hμ

= min
f∈L2(μ,H)

f=Ψ∗f

Et∼μ‖〈f(t), Φt(·)〉H‖2
Ht

.

Note that, by definition, the last assertion of Theorem 2.2 can be stated as

‖f‖2
Hμ

= min
f∈L2(μ,H)

f=Ψ∗f

Et∼μ‖Φ∗
t f(t)‖2

Ht
.

3 The approximation error function inequality

In this section we will establish the integral approximation error function inequality (2). Although
the following analysis is easier when the risk function is the expectation of a loss function, some
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important risk functions are not of this type. For example, the two-class Neyman-Pearson classifi-
cation problem (see e.g. [11, 26, 27]) is to minimize one type of error while constraining the other
type of error. To handle this more general case, consider a risk function defined on a space which
contains all Ht, t ∈ T . Our first order of business is then to consider when Hμ also lies in this space.
For simplicity, we consider the case when Ht ⊂ L2(ν), t ∈ T, where ν is a measure on X. To be
precise about the meaning of this, for f : X → R, let [f ]∼ denote the equivalence class of functions
which equal f ν-a.e. For t ∈ T we say that Ht ⊂ L2(ν) if for all f ∈ Ht we have [f ]∼ ∈ L2(ν).

Lemma 3.1 In addition to the assumptions of Theorem 2.2, let X be a measurable space. Let ν be
a measure on X and let k̂ : T ×X → R defined by k̂(t, x) := kt(x, x) satisfy k̂(t, ·) ∈ L1(ν), t ∈ T,
and k̂ ∈ L1(μ ⊗ ν). Then we have inclusions It : Ht ↪→ L2(ν) satisfying

‖It‖ ≤ ‖k̂(t, ·)‖
1
2

L1(ν), t ∈ T

and Iμ : Hμ ↪→ L2(ν) satisfying

‖Iμ‖ ≤ ‖k̂‖
1
2

L1(μ⊗ν).

Note that the inclusions above may not be injective. Indeed, [29, Thm. 4.26] shows that, for t ∈ T ,
the inclusion It is injective if and only if the image of the integral operator associated with the
kernel is dense in the RKHS. For more about this topic see the discussion after [29, Thm. 4.26].

Therefore, if Lemma 3.1 applies and we have a risk function R : L2(ν) → R we can define risk
functions on Ht, t ∈ T and Hμ through the injections. Moreover, for all λ ≥ 0 define the regularized
risk functions Rλ,t : Ht → R , t ∈ T and Rλ,μ : Hμ → R by

Rλ,t(f) := λ‖f‖2
Ht

+ R(Itf), f ∈ Ht,

Rλ,μ(f) := λ‖f‖2
Hμ

+ R(Iμf), f ∈ Hμ.

Finally, consider their minimum values R∗
λ,t := inff∈Ht Rλ,t(f) and R∗

λ,μ := inff∈Hμ Rλ,μ(f).
Before we state our main result concerning a relationship between the minimum regularized

risk associated with Hμ and that of Ht, t ∈ T , we establish a result that will be useful in its proof.
Let f ∈ Hμ and consider the case when Lemma 3.1 applies. Since Iμ : Hμ ↪→ L2(ν) we have

Iμf ∈ L2(ν). On the other hand, by Theorem 2.2 we have f(x) = Et∼μ

((
Φ∗

t f(t)
)
(x)

)
for some

f ∈ L2(μ,H). Since Φ∗
t f(t) ∈ Ht and It : Ht ↪→ L2(ν) for all t ∈ T , we can consider whether the

L2(ν)-valued Bochner integral Et∼μItΦ∗
t f(t) exists and if it exists, whether Iμf = Et∼μItΦ∗

t f(t). The
following theorem gives sufficient conditions for this to be the case.

Theorem 3.2 In addition to the assumptions of Theorem 2.2 and Lemma 3.1, let ν be a σ-finite
measure on X and μ be σ-finite measure on T . Suppose that the map Φ : T × X → H defined by
Φ(t, x) := Φt(x) is weakly H-measurable and that the map T → L

(H, L2(ν)
)

defined by t �→ ItΦ∗
t is

simply L2(ν)-measurable. Then the function t �→ ItΦ∗
t f(t) is Bochner integrable for all f ∈ L2(μ,H)

and so defines an integral operator I : L2(μ,H) → L2(ν) by

If := Et∼μItΦ∗
t f(t).

This integral operator satisfies
I = IμΨ∗

with ‖I‖ ≤ ‖k̂‖
1
2

L1(μ⊗ν).
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Remark 3.3 Theorem 3.2 is also true when L2(ν) is replaced by the space Cb(X) of bounded
continuous functions or Lp(ν), p ≥ 1 since the extension is trivial for Cb(X) and the Dunford-
Schwartz Theorem [14, Thm. 17, Pg. 198] concerning scalar representations for Bochner integrals is
all that is needed for the extension to Lp(ν), p ≥ 1. Moreover, we suspect that the Dunford-Schwartz
Theorem also applies to Köthe spaces [19, Pg. II.28].

We can now establish our main result concerning a relationship between the minimum regu-
larized risk associated with Hμ and that of Ht, t ∈ T . To simplify we state the result only for
probability measures.

Theorem 3.4 In addition to the assumptions of Theorems 2.2 and 3.2, let μ be a probability
measure and suppose that R : L2(ν) → R is a continuous convex function. Then we have

R∗
λ,μ ≤ Et∼μR∗

λ,t , λ ≥ 0. (13)

Now let us apply Theorem 3.4 to the approximation error functions. We define the approxima-
tion error functions to be At(λ) := R∗

λ,t −R∗
0,t, t ≥ 0 and Aμ(λ) := R∗

λ,μ −R∗
0,μ and the Bayes risk

to be R∗ := inff∈L2(ν) R(f). We have the following corollary.

Corollary 3.5 In addition to the assumptions of Theorem 3.4, suppose that

μ
({t ∈ T : R∗

0,t �= R∗}) = 0.

Then we have R∗
0,μ = R∗ and

Aμ(λ) ≤ Et∼μAt(λ) , λ ≥ 0.

4 Radial kernels

We now show that all the previous results apply to the radial kernels Krad and then apply Corollary
3.5 to bound the approximation error function corresponding to the hinge-loss risk for the two ker-
nels mentioned in the introduction. To that end, we introduce some notations and representations.
Suppose that Y ⊂ R is measurable and P a probability measure on X ×Y . Then, according to [29,
Def. 2.16], a function L : X ×Y ×R → R

+ is said to be a convex continuous P -integrable Nemitski
loss of order p ∈ [1, 2] if it is convex and continuous in its last variable for all x ∈ X, y ∈ Y , and
there exits a P -integrable function b and a constant c > 0 such that for all x ∈ X, y ∈ Y, t ∈ R we
have L(x, y, t) ≤ b(x, y) + c|t|p. Also, let T = R

+ and define H := L2(Rd). Consider the family
(Φt)t∈R+ of maps Φt : R

d → H defined as follows. For t = 0 select z ∈ H such that ‖z‖H = 1 and
define

Φ0(x) := z, x ∈ R
d .

For t > 0, define

Φt(x) :=
t

d
2 2

d
2

π
d
4

e−2t2‖x−·‖2
2 , x ∈ R

d .

Then [29, Lem. 4.45] implies that the family (Φt)t∈R+ of maps Φt : X → H obtained by restricting
to an arbitrary subset X ⊂ R

d are feature maps for the Gaussian kernels kt ∈ G, t ∈ R
+, defined

on X.

Theorem 4.1 Consider the family (Φt)t∈R+ defined above.

i) Let X ⊂ R
d be a Borel subset. Then Lemma 2.1 applies.
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ii) Consider a radial kernel k ∈ Krad and a finite Borel representing measure μ such that k = kμ.
Moreover, consider the family (kt)t∈R+ of Gaussian kernels equipped with the above defined
family (Φt)t∈R+ of feature maps. Then Theorem 2.2 applies.

iii) Suppose further that ν is a finite Borel measure on X . Then Lemma 3.1 and Theorem 3.2
apply and assert that

‖It‖ ≤
√

ν(X), t ∈ T,

‖Iμ‖ ≤
√

μ(R+)ν(X) < ∞,

‖I‖ ≤
√

μ(R+)ν(X) < ∞.

iv) Suppose further that k(x, x) = 1, x ∈ X, and R : L2(ν) �→ R is a continuous convex function.
Then Theorem 3.4 applies.

v) In addition to the assumptions of i),ii), and iii), suppose that Y ⊂ R is measurable and P
a probability measure on X × Y . Moreover, let L : X × Y × R → R

+ be convex continuous
P -integrable Nemitski loss of order p ∈ [1, 2], and consider the corresponding risk function
R(f) := E(x,y)∼P L(x, y, f(x)). Finally, suppose that limx �→∞ k(x, x′) = 0, x′ ∈ X. Then,
R : L2(PX) → R

+ and Corollary 3.5 applies.

We now use Corollary 3.5 via Theorem 4.1 to bound the approximation error function for the
hinge risk and the RKHSs corresponding to the two kernels mentioned in the introduction. Let P
be a probability measure on X ×{−1, 1} and consider the hinge loss L : R×{−1, 1} → R

+ defined
by L(s, y) := max {0, 1 − ys} and the hinge risk R(f) := E(x,y)∼P L(f(x), y). Then, as defined in
[29, Def. 8.15], we say that P has margin-noise exponent β ∈ [0,∞) if∫

Δ(x)<t
|2η(x) − 1|dPX(x) ≤ ctβ, t ≥ 0

for some version η : X → [0, 1] of the conditional probability η(x) := P (y = 1|x), where Δ(x) is
the distance to the decision boundary defined by {x : η(x) = 1

2}. The noise exponent quantifies
the concentration of mass around the decision boundary and is used to bound the approximation
error function for the hinge risk and Gaussian kernels in [29, Thm. 8.18]. The following result can
easily be extended to arbitrary measurable subsets X ⊂ R

d with the assumption of a tail exponent
for PX , thus extending [29, Thm. 8.18] to the two kernels mentioned in the introduction.

Corollary 4.2 Let X ⊂ R
d be the closed unit ball and let P be a probability measure on X×{−1, 1}

with margin-noise exponent β ∈ (0,∞). Let R denote the hinge risk function. Moreover, for α > 0,
consider the exponential kernel

k(x, x′) := e−α‖x−x′‖, x, x′ ∈ X

and its RKHS Hk. Then, for d ≥ 2, we have

Ak(λ) ≤ Cd,β

(
λ

1
d α + α−β

)
, λ > 0

where Cd,β is a constant depending only on d and β.

Corollary 4.3 With the assumptions of Corollary 4.2, instead consider the kernel

k(x, x′) :=
(
1 + m−1‖x − x′‖2

2

)−α
, x, x′ ∈ X

8



and its RKHS Hk, for m > 0, α > 0 and d ≥ 1. Then for 2α − β ≥ 1 we have

Ak(λ) ≤ Cd,β

(
λm− d

2
Γ(d

2 + α)
Γ(α)

+ m
β
2
Γ(α − β

2 )
Γ(α)

)
, λ > 0

and for 2α − β < 1 we have

Ak(λ) ≤ Cd,β

(
λm− d

2
Γ(d

2 + α)
Γ(α)

+ m
αβ

β+2
1 + α

αΓ(α)

)
, λ > 0

where Γ(z) :=
∫

R+ tz−1e−t, z > 0 is the Gamma function and Cd,β is a constant depending only
on d and β.

Remark 4.4 The inequalities of Corollary 4.3 can be simplified using the inequality Γ( d
2
+α)

Γ(α) ≤ α
d
2 ,

found in [23] and the references therein. Moreover, the inequalities of Corollaries 4.2 and 4.3 can
easily be sharpened using simple modifications of the proofs. However, our preliminary analysis
lead to more complex results than those presented. The development of sharper, yet simple, bounds
on the approximation error function is out of the scope of this paper.

4.1 Additional results for radial kernels

We now utilize the fact (see e.g. [29, Prop. 4.46]) that the family G of Gaussian kernels is nested
in the sense that Ht1 ⊂ Ht2 , 0 < t1 ≤ t2. We first prove that Hμ(Rd) does not contain constants if
μ({0}) = 0. Let 1 denote the constant function with value 1.

Theorem 4.5 If μ({0}) = 0, then we have 1 /∈ Hμ(Rd).

Note that if we choose μ := δt, the Dirac measure situated at t > 0, we obtain 1 /∈ Ht(Rd) which
is a special case of the ”no constants” theorem for Gaussian RKHSs [29, Cor. 4.44].

Each fixed α ≥ 0 determines an operator α∗ : M → M on measures defined by
(
α∗μ

)
(A) :=

μ(αA). Therefore any μ determines a one parameter family of radial kernels (kα∗μ)α≥0. From [29,
Prop. 4.46] we know that, for all 0 < α1 ≤ α2, t > 0, we have Hα1t ⊂ Hα2t and that

‖id : Hα1t → Hα2t‖ ≤
(α2

α1

) d
2
. (14)

The following result shows we have the same results for (Hα∗μ)α>0.

Lemma 4.6 Consider a finite Borel measure μ and the family of kernels (kα∗μ)α≥0 on X. Then
for all 0 < α1 ≤ α2 we have Hα∗

1μ ⊂ Hα∗
2μ and

‖id : Hα∗
1μ → Hα∗

2μ‖ ≤
(α2

α1

) d
2
.

The following two theorems demonstrate sufficient conditions to have Hμ ⊂ Ht or Ht ⊂ Hμ for
some t.

Theorem 4.7 Let X ⊂ R
d and consider a finite Borel measure μ such that μ({0}) = 0 and

Et∼μt−d < ∞. Furthermore, assume that, for some t∗ > 0, we have μ
(
[t∗,∞)

)
= 0. Then we have

Hμ ⊂ Ht∗ and

‖id : Hμ → Ht∗‖ ≤ (t∗)
d
2

√
Et∼μt−d.

9



Theorem 4.8 Let X ⊂ R
d and consider a finite Borel measure μ satisfying μ(0,∞) > 0. Then

there exists a t1 > 0 such that μ([t1,∞)) > 0 and for any such t1 we have Ht1 ⊂ Hμ. Moreover, for
any such t1 there exists a t2 such that μ([t1, t2]) > 0 and for any such t2 we have

‖id : Ht1 → Hμ‖ ≤ t
− d

2
1

μ([t1, t2])

(∫
[t1,t2]

tddμ(t)
) 1

2 ≤
( t2

t1

) d
2
μ([t1, t2])−

1
2 .

The following corollary in particular generalizes the universality result of [21] to noncompact X.

Corollary 4.9 Let X ⊂ R
d and consider a non-constant radial kernel k. Then the following hold:

i) Hk(Rd) is dense in Lp(ν) for all p ∈ [1,∞) and all finite measures ν on R
d.

ii) If X ⊂ R
d is compact, then k is universal.

iii) If μ([t,∞)) > 0 for all t > 0, we have ∪t>0Ht ⊂ Hμ.

iv) k is strictly positive definite.

5 Proofs

Proof of Theorem 1.1: Recall that a symmetric bivariate function k : R
d × R

d → R is called
positive definite (k � 0) if for all n, and xi ∈ R

d, ai ∈ R, i = 1, .., n we have

n∑
i,j=1

aiajk(xi, xj) ≥ 0 . (15)

Observe that Moore’s result [22] (see e.g. [3]) asserts that kg is a reproducing kernel, if and
only if it is positive definite. Moreover, Schoenberg’s result [25, Thm. 2], which heavily uses the
representation of translation invariant functions of Bochner [9], states that kg is positive definite
for all d if and only if there exists a finite Borel measure μ on R

+ such that g(s) = Et∼μe−t2s2
.

Substituting s := ‖x − x′‖ yields the equivalence between i) and ii). The equivalence between ii)
and iii) is the result of Berstein [8, 35] (see also Schoenberg [25, Thm. 3]). For a thorough discussion
of this topic see [7].

Proof of Lemma 2.1: We need to show that for f ∈ H the function t �→ PΦtf is H-measurable.
To that end, fix an f ∈ H, and consider the function h : T × X ×H → R defined by h(t, x, g) :=(〈g − f,Φt(x)〉)2. Since the map (t, x) �→ Φt(x) is weakly H-measurable it follows, for fixed g,
that h is measurable in (t, x). Moreover, h is obviously continuous in g for (x, t) fixed. Since
H is separable and complete it is Polish. Therefore, it follows from Carathéodory’s Lemma [12,
Lem. III.39] (see also [29, Lem. A.3.17]) that h is measurable. Since X is Suslin it follows from
[12, Lem. III.39] that h́ : T ×H → R defined by h́(t, g) := supx∈X h(t, x, g) is measurable. Now
observe that since ker(Φ∗

t ) = {w ∈ H : Φ∗
t w = 0} = {w ∈ H : 〈w,Φt(x)〉 = 0, x ∈ X} the set-valued

function F : R
+ → 2H defined by

F (t) = f + ker(Φ∗
t ).

satisfies F (t) = {g : h́(t, g) = 0}. Since the function ω : T ×H → R defined by

ω(t, g) = ‖g‖2
H

10



is measurable and equations (8) and (9) assert that the infimum infg∈F (t) ω(t, g) = infg:Φ∗
t g=Φ∗

t f ‖g‖2
H

is attained at g(t) := PΦtf , Aumann’s selection principle [29, Lem. A.3.18] implies that : t �→ PΦtf
is measurable. Since H is separable the assertion follows from [13, Cor. 1.9, Pg. 6].

Proof of Theorem 2.2: First observe that the assumption Ψx, Ψx′ ∈ L2(μ,H) implies that the
function

t �→ 4〈Ψx(t), Ψx′(t)〉H = ‖Ψx(t) + Ψx′(t)‖2 − ‖Ψx(t) − Ψx′(t)‖2

is integrable for all x, x′ ∈ X. Consequently, we obtain

〈Ψx, Ψx′〉L2(μ,H) = Et∼μ〈Ψx(t), Ψx′(t)〉H = Et∼μ〈Φt(x), Φt(x′)〉H = Et∼μkt(x, x′)

and so conclude that the function t �→ kt(x, x′) is μ integrable for all x, x′ ∈ X, and Ψ is a feature
map for kμ := Et∼μkt. Therefore, we obtain (10) and (11) from (6) and (7) respectively. Since(

Ψ∗f
)
(x) = 〈f, Ψx〉L2(μ,H) = Et∼μ〈f(t), Ψx(t)〉H = Et∼μ〈f(t), Φt(x)〉H = Et∼μ

((
Φ∗

t f(t)
)
(x)

)
,

we then obtain (12).

For the last assertion, let us first show that for f ∈ L2(μ,H) the function f̂ : T → H defined
by f̂(t) := PΦtf(t) satisfies ‖̂f(t)‖2

H = ‖Φ∗
t f(t)‖2

Ht
, f̂(t) ∈ L2(μ,H), and Ψ∗f = Ψ∗f̂. That is, for

f ∈ L2(μ,H), defining f̂(t) := PΦtf(t), t ∈ T , we have

‖̂f(t)‖2
H = ‖Φ∗

t f(t)‖2
Ht

, t ∈ T (16)

and, for f ∈ Hμ, we have{
f̂ : T → R

∣∣∣∃f ∈ L2(μ,H) : f = Ψ∗f and f̂(t) = PΦtf(t), t ∈ T
}
⊂

{
f ∈ L2(μ,H) : f = Ψ∗f

}
. (17)

To that end, first observe that (8) and (9) imply that ‖̂f(t)‖2
H = ‖Φ∗

t f(t)‖2
Ht

. Moreover, Lemma 2.1
and [13, Prop. 1.13, Pg. 7] imply that f̂ is H-measurable for f ∈ L2(μ,H). Since ‖̂f(t)‖2

H ≤ ‖f(t)‖2
H,

we conclude that f̂(t) ∈ L2(μ,H). Now fix t ∈ T . Since PΦt is an orthogonal projection it follows
that f(t) − f̂(t) = f(t) − PΦtf(t) ∈ ker(Φ∗

t ). Consequently, we obtain Φ∗
t f̂(t) = Φ∗

t PΦtf(t) = Φ∗
t f(t)

and therefore (
Ψ∗f

)
(x) = Et∼μ

(
Φ∗

t f(t)
)
(x) = Et∼μ

(
Φ∗

t f̂(t)
)
(x) =

(
Ψ∗f̂

)
(x).

That is, Ψ∗f = Ψ∗f̂, establishing the claim.

To prove the last assertion, consider f ∈ Hμ. It follows from the first assertion, (16), and (17), that

‖f‖2
Hμ

= inf
f∈L2(μ,H)

f=Ψ∗f

‖f‖2
L2(μ,H) = inf

f∈L2(μ,H)
f=Ψ∗f

Et∼μ‖f(t)‖2
H

≤ inf
f̂(t)=PΦt f(t),t∈T

f∈L2(μ,H)
f=Ψ∗f

Et∼μ‖̂f(t)‖2
H

= inf
f∈L2(μ,H)

f=Ψ∗f

Et∼μ‖Φ∗
t f(t)‖2

Ht
.

To obtain an equality observe that for fixed f ∈ L2(μ,H) we have ‖Φ∗
t f(t)‖Ht ≤ ‖f(t)‖H so we

conclude that Et∼μ‖Φ∗
t f(t)‖2

Ht
≤ Et∼μ‖f(t)‖2

H = ‖f‖2
L2(μ,H). Equality then follows from the first line

of the above displayed inequality, establishing the last assertion with an infimum. To obtain the
expression with a minimum, observe that (8) and (9) imply that the infimum is attained in the
first line. Let f be a minimizer. Then the above discussion shows that f̂ is also a minimizer.
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Proof of Lemma 3.1: The first assertion follows from the proof of [29, Thm. 4.26]. Since The-
orem 2.2 implies that kμ(x, x) = Et∼μkt(x, x), and kt(x, x) ≥ 0, t ∈ T, x ∈ X, it follows from
Tonelli’s theorem that Ex∼νkμ(x, x) = Ex∼νEt∼μkt(x, x) = E(t,x)∼μ⊗νkt(x, x). Therefore we obtain
‖k̂μ‖L1(ν) = ‖k̂‖L1(μ⊗ν) so that the second assertion also follows from the proof of [29, Thm. 4.26].

Proof of Theorem 3.2: Recall that the assumption that t �→ ItΦ∗
t is simply measurable means

that the function t �→ ItΦ∗
t g is L2(ν)-measurable for all g ∈ H. Consequently, [13, Prop. 1.13, Pg. 7]

implies that the function t �→ ItΦ∗
t f(t) is L2(ν)-measurable for all f ∈ L2(μ,H). Since for all t ≥ 0

we have ‖ItΦ∗
t f(t)‖L2(ν) ≤ ‖It‖‖Φ∗

t f(t)‖Ht ≤ ‖It‖‖f(t)‖H ≤ ‖k̂(t, ·)‖
1
2

L1(ν)‖f(t)‖H, we conclude that

Et∼μ‖ItΦ∗
t f(t)‖L2(ν) ≤ Et∼μ

(‖k̂(t, ·)‖
1
2

L1(ν)‖f(t)‖H
) ≤ ‖k̂‖

1
2

L1(μ⊗ν)‖f‖L2(μ,H)

and conclude that t �→ ItΦ∗
t f(t) is integrable and so the integral operator I is well defined. Moreover,

since
‖If‖ ≤ Et∼μ‖ItΦ∗

t f(t)‖ ≤ ‖k̂‖
1
2

L1(μ⊗ν)‖f‖L2(μ,H) ,

we conclude that I : L2(μ,H) → L2(ν) is continuous and ‖I‖ ≤ ‖k̂‖
1
2

L1(μ⊗ν).

To prove that I = IμΨ∗, first observe that by the assumption that T × X �→ Φt(x) is weakly
H-measurable, it follows from [13, Prop. 1.13, Pg. 7] that the function T × X �→ 〈f(t), Φt(x)〉 =(
Φ∗

t f(t)
)
(x) is measurable. Now let f ∈ L2(μ,H) and consider If = Et∼μItΦ∗

t f(t). Then the Dunford-
Schwartz Theorem [14, Thm. 17, Pg. 198] states that there exists a measurable function g : T×X →
R, uniquely determined except for a set of μ ⊗ ν-measure zero, such that [g(t, ·)]∼ = ItΦ∗

t f(t) for
μ-almost all t ∈ T . Moreover, g(·, x) is μ-integrable for ν-almost all x ∈ X and

[
Et∼μg(t, ·)]∼ = If.

Consequently, since the function (t, x) �→ (
Φ∗

t f(t)
)
(x) is measurable we conclude, by the uniqueness,

that
[
Et∼μ

((
Φ∗

t f(t)
)
(x)

)]
∼ = Et∼μItΦ∗

t f(t) = If. Since (Ψ∗f
)
(x) = Et∼μ

((
Φ∗

t f(t)
)
(x)

)
we conclude

that
[
Ψ∗f

]
∼ = If. That is, If = IμΨ∗f. Since f ∈ L2(μ,H) was arbitrary we conclude that

I = IμΨ∗.

Proof of Theorem 3.4: First consider λ > 0. Suppose that f ∈ Hμ. Then by Theorem 3.2, for
all f ∈ L2(μ,H) with f = Ψ∗f, we have Iμf = IμΨ∗f = If. In addition, Jensen’s inequality for
Bochner integrals, Theorem 6.3 (see [34, Sec. 4] for a more general result), implies that the integral
of t �→ R(ItΦ∗

t f(t)) exists and

R(If) = R(Et∼μItΦ∗
t f(t)) ≤ Et∼μR(ItΦ∗

t f(t)).

Consequently, we have

Rλ,μ(f) = λ‖f‖2
Hμ

+ R(Iμf) ≤ λEt∼μ‖f(t)‖2
H + R(If) ≤ Et∼μ

(
λ‖f(t)‖2

H + R(ItΦ∗
t f(t))

)
,

and conclude that
R∗

λ,μ ≤ inf
f∈L2(μ,H)

Et∼μ

(
λ‖f(t)‖2

H + R(ItΦ∗
t f(t))

)
. (18)

Now consider the function φ : T ×H → R defined by

φ(t, g) = λ‖g‖2
H + R(ItΦ∗

t g).

Since the function t �→ ItΦ∗
t g is L2(ν)-measurable for all g it follows from [13, Thm. 1.8, Pg. 5] that

it is Borel measurable for all g. Since R is continuous, it follows that φ(·, g) is measurable for all
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g ∈ H. On the other hand since ‖ItΦ∗
t g‖L2(ν) ≤ ‖It‖‖Φ∗

t g‖Ht ≤ ‖It‖‖g‖H it follows for fixed t that
the map g �→ ItΦ∗

t g is continuous. Since R is continuous, it then follows that φ(t, ·) is continuous for
all t ∈ T . Since H is separable and complete it is Polish. Therefore, it follows from Carathéodory’s
Lemma [12, Lem. III.39] that φ : T × H → R is measurable. Now, by the strict convexity of the
Hilbert space norm, it is easy to see that for t ∈ T there is a unique solution

g(t) := arg min
g∈H

φ(t, g) = arg min
g∈H

(
λ‖g‖2

H + R(ItΦ∗
t g)

)
.

Moreover, since for fixed g ∈ H we have

min
g′∈H

Φ∗
t g′=Φ∗

t g

‖g′‖2
H = ‖Φ∗

t g‖2
Ht

,

we have
min
g′∈H

Φ∗
t g′=Φ∗

t g

(
λ‖g‖2

H + R(ItΦ∗
t g)

)
= λ‖Φ∗

t g‖2
Ht

+ R(ItΦ∗
t g) = Rλ,t(Φ∗

t g)

and conclude that

λ‖g(t)‖2
H + R(ItΦ∗

t g(t)) = min
g∈H

(
λ‖g‖2

H + R(ItΦ∗
t g)

)
= min

g∈H
Rλ,t(Φ∗

t g) = min
ĝ∈Ht

Rλ,t(ĝ) = R∗
λ,t.

Consequently, Aumann’s selection principle [29, [Lem. III.39] implies that the function g : t �→ g(t)
is measurable and the function t �→ infg∈H

(
λ‖g‖2

H + R(ItΦ∗
t g)

)
= R∗

λ,t is measurable. Moreover,
since R∗

λ,t ≤ R(0), t ∈ T and μ is finite, it follows the integral Et∼μR∗
λ,t exists. Therefore we

conclude that

inf
f∈L2(μ,H)

Et∼μ

(
λ‖f(t)‖2

H + R(ItΦ∗
t f(t))

)
≤ Et∼μ

(
λ‖g(t)‖2

H + R(ItΦ∗
t g(t))

)
= Et∼μR∗

λ,t.

The assertion for λ > 0 then follows from (18).

For the case λ = 0, it follows from [29, Lem. A.6.4] that R∗
λ,μ and R∗

λ,t are increasing and continuous
functions of λ for each t. Since R∗

λ,t ≤ R(0), t ∈ T, λ ≥ 0, the extended monotone convergence
theorem [4, Thm. 1.6.7] and the assertion for λ > 0 imply that

R∗
0,μ ≤ Et∼μR∗

0,t.

Proof of Corollary 3.5: Theorem 3.4, Hμ ⊂ L2(ν), and the assumptions imply that

R∗ ≤ R∗
0,μ ≤ Et∼μR∗

0,t = R∗

establishing the first assertion. Consequently Theorem 3.4 implies

Aμ(λ) = R∗
λ,μ −R∗

0,μ ≤ Et∼μR∗
λ,t −R∗ = Et∼μ

(R∗
λ,t −R∗) = Et∼μAt(λ).
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Proof of Theorem 4.1: Consider t1, t2 > 0, x ∈ X, and use the integral identity Eeσ−1‖·‖2
2 =

(πσ)
d
2 , σ > 0, to obtain that

〈Φt1(x), Φt2(x)〉H =
2dt

d
2
1 t

d
2
2

π
d
2

∫
y∈Rd

e−2(t21+t22)‖x−y‖2
2dy

=
2dt

d
2
1 t

d
2
2

π
d
2

∫
y∈Rd

e−2(t21+t22)‖y‖2
2dy

=
( 2t1t2

t21 + t22

) d
2
.

Therefore we conclude that

‖Φt1(x) − Φt2(x)‖2
H = ‖Φt1(x)‖2

H + ‖Φt2(x)‖2
H − 2〈Φt1(x), Φt2(x)〉H

= 2 − 2
( 2t1t2

t21 + t22

) d
2

= 2 − 2
(
1 − |t1 − t2|2

t21 + t22

) d
2
.

That is,

‖Φt1(x) − Φt2(x)‖H =

√
2 − 2

(
1 − |t1 − t2|2

t21 + t22

) d
2
. (19)

In addition, by invariance of integration under the translation y �→ y + x1+x2
2 we can show that

〈Φt(x1), Φt(x2)〉H =
2dtd

π
d
2

∫
y∈Rd

e−2t2‖x1−y‖2
2e−2t2‖x2−y‖2

2dy

=
2dtd

π
d
2

∫
y∈Rd

e−2t2
(
‖x1−x2

2
−y‖2

2+‖x2−x1
2

−y‖2
2

)
dy

=
2dtd

π
d
2

∫
y∈Rd

e−4t2
( ‖x1−x2‖22

4
+‖y‖2

2

)
dy

= e−t2‖x1−x2‖2
2
2dtd

π
d
2

∫
y∈Rd

e−4t2‖y‖2
2dy

= e−t2‖x1−x2‖2
2 .

Consequently, we obtain

‖Φt(x1) − Φt(x2)‖H =
√

2 − 2e−t2‖x1−x2‖2 . (20)

Therefore, using the identity Φt1(x1)−Φt2(x2) = Φt1(x1)−Φt2(x1)+Φt2(x1)−Φt2(x2) we conclude
that the map Φ : R

+×X → H defined by Φ(t, x) := Φt(x) is continuous and therefore measurable
on {t > 0} × X. Since Φ has the constant value z on {t = 0} × X it easily follows that Φ is
measurable on R

+×X. Since H = L2(Rd) is separable (see e.g. [2, Thm. 2.15]), it follows from [13,
Thm. 1.8, Pg. 5] that that Φ is H-measurable, and therefore it is weakly H-measurable. Moreover,
since X is a Borel set, it follows from [18, Thm. 1.7.9] that X is Suslin. Therefore, since H is
separable, Lemma 2.1 applies. For the second assertion, observe that (19) implies that for x ∈ X
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the function Ψx : R
+ → H defined by Ψx(t) = Φt(x) is continuous and therefore measurable on

(0,∞). Consequently, Ψx is measurable on R
+. Since H is separable it follows from [13, Thm. 1.8,

Pg. 5] that Ψx is H-measurable. Moreover, since μ is finite and ‖Ψx(t)‖H = 1, x ∈ X, t ≥ 0 it
follows that Ψx ∈ L2(μ,H), x ∈ X. Therefore, Theorem 2.2 applies.

For the third assertion, observe that since kt(x, x) = 1, t ∈ R
+, x ∈ X, and the measure ν on X

is finite, it follows that Lemma 3.1 applies with k̂(t, ·) ≡ 1, t ∈ R
+, and so we also obtain the

assertions on the bounds on the inclusions. To show that Theorem 3.2 applies we need to show
that the map R

+ → L(H, L2(ν)) defined by t �→ ItΦ∗
t is simply L2(ν)-measurable. To that end,

let g ∈ H and consider the function R
+ → H defined by t �→ ItΦ∗

t g. For fixed t > 0, observe that

Φt(0) = t
d
2 2

d
2

π
d
4

e−2t2‖·‖2
2 , and hence

(
Φ∗

t g
)
(x) = 〈g, Φt(x)〉H =

t
d
2 2

d
2

π
d
4

∫
Rd

e−2t2‖x−y‖2
2g(y)dy =

(
Φt(0) ∗ g

)
(x) ,

where ∗ is the convolution operator. Therefore, we can write Φ∗
t g = Φt(0) ∗ g. Since Young’s

inequality [15, Thm. 20.18] and (19) show that

∥∥Φ∗
t1g − Φ∗

t2g
∥∥
∞ = ‖(Φt1(0) − Φt2(0)) ∗ g‖∞ ≤ ‖Φt1(0)−Φt2(0)‖H ‖g‖H ≤

√
2 − 2

(
1 − |t1 − t2|2

t21 + t22

) d
2 ‖g‖H

we conclude that

‖It1Φ
∗
t1g − It2Φ

∗
t2g‖L2(ν) ≤

∥∥Φ∗
t1g − Φ∗

t2g
∥∥
∞

√
ν(X) ≤

√
2 − 2

(
1 − |t1 − t2|2

t21 + t22

) d
2 ‖g‖H

√
ν(X).

Consequently, t �→ ItΦ∗
t g is continuous and therefore measurable on (0,∞). Moreover the continuity

also implies its range is separable. It follows that t �→ ItΦ∗
t g is measurable on [0,∞), and has a

separable range. Consequently, by [13, Thm. 1.8, Pg. 5], it is L2(ν)-measurable. Since g ∈ H was
arbitrary, it follows that t �→ ItΦ∗

t is simply L2(ν)-measurable. Since we have shown in the proof
of the first assertion that Φ is weakly H-measurable, it follows that Theorem 3.2 applies.

For the fourth assertion, observe that the assumption 1 = k(x, x) =
∫

kt(x, x)dμ(t) = μ(R+) implies
that μ is a probability measure. Therefore, since R : L2(ν) → R is a continuous convex function,
Theorem 3.4 applies.

For the last assertion, observe that it follows from [29, Lem. 2.17] that R : L2(PX) → [0,∞) is well
defined, continuous and convex and therefore Theorem 3.4 applies. Moreover, by [29, Thm. 4.63],
the Gaussian RKHSs are known to be dense in L2(PX). Consequently, since X ⊂ R

d is measurable
we have by [29, Thm. 5.31] and the discussion below it that R∗

0,t = R∗ for all t > 0. From the
assumption 0 = limx �→∞ k(x, x′), x′ ∈ X it follows from the Lebesgue dominated converge theorem
that 0 = limx �→∞ k(x, x′) = Et∼μlimx �→∞ kt(x, x′) = μ({0}). Therefore Corollary 3.5 applies.

Proof of Corollary 4.2: From [1, Eq. 29.3.82] we have that e−α
√

s is given by

e−α
√

s =
∫

R+

e−su α

2
√

πu3
e−

α2

4u du, s ∈ R
+.

Changing variables by u = t2 we obtain

e−α
√

s =
α√
π

∫
R+

e−st2t−2e−
α2

4t2 dt
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so that if we consider the Borel probability measure μ := α√
π
t−2e−

α2

4t2 dt we have μ({0}) = 0 and
k = kμ. Since the hinge loss function is a P -integrable Nemitski loss of order p = 1 we can apply
Corollary 3.5 to obtain

Ak(λ) ≤ Et∼μAt(λ).

Now [29, Thm. 8.18] implies that At(λ) ≤ Cd,β(λtd + t−β) where Cd,β is a constant depending only
on (d, β). However, we also have Ak(λ) ≤ 1, λ ≥ 0. Let

Γ(z, x) :=
∫ ∞

x
tz−1e−tdt

denote the incomplete gamma function, which is well defined for all z ∈ R, x > 0. We split up the
domain of integration into R

+ = [0, α
2
√

b
) ∪ [ α

2
√

b
,∞). Then, for κ ∈ R, by the change of variables

σ := α2

4t2
, we have∫

[0, α

2
√

b
)
tκdμ(t) =

α√
π

∫
[0, α

2
√

b
)
tκ−2e−

α2

4t2 dt =
ακ

2κ
√

π

∫
(b,∞)

σ− 1+κ
2 e−σds =

ακ

2κ
√

π
Γ
(1 − κ

2
, b

)
.

Since Γ(1
2) =

√
π, we also have∫

[ α

2
√

b
,∞)

dμ(t) =
α√
π

∫
[ α

2
√

b
,∞)

t−2e−
α2

4t2 dt =
1√
π

(√
π − Γ

(1
2
, b

))
.

Therefore, using each inequality At(λ) ≤ Cd,β(λtd + t−β) and Ak(λ) ≤ 1 on different components
of the split R

+ = [0, α
2
√

b
) ∪ [ α

2
√

b
,∞), we obtain

Ak(λ) ≤ Et∼μAt(λ)

≤ Cd,β

∫
[0, α

2
√

b
)

(
λtd + t−β

)
dμ(t) +

∫
( α

2
√

b
,∞)

dμ(t)

= Cd,β

(
λ

αd

2d
√

π
Γ
(1 − d

2
, b

)
+

α−β

2−β
√

π
Γ
(1 + β

2
, b

))
+

1√
π

(√
π − Γ

(1
2
, b

))
.

Now consider that
Γ
(1 + β

2
, b

)
≤ Γ

(1 + β

2

)
,

1√
π

(√
π − Γ

(1
2
, b

))
=

1√
π

∫ b

0
e−σσ− 1

2 dσ ≤ 1√
π

∫ b

0
σ− 1

2 dσ ≤ 2√
π

b
1
2 ,

and
Γ
(1 − d

2
, b

)
=

∫ ∞

b
e−σσ− d+1

2 dσ ≤
∫ ∞

b
σ− d+1

2 dσ =
2

d − 1
b

1−d
2 ≤ 2b

1−d
2 .

Therefore, we obtain

Ak(λ) ≤ Cd,β

(
λ

αd

2d−1
√

π
b

1−d
2 +

α−β

2−β
√

π
Γ
(1 + β

2

))
+

2√
π

b
1
2 .

Setting b := 1
4λ

2
d α2, which amounts to the split R

++ = [0, λ− 1
d ) ∪ [λ− 1

d ,∞), we see that
λ αd

2d−1
√

π
b

1−d
2 = 2b

1
2 and therefore obtain the assertion by adjusting the value of Cd,β.

16



Proof of Corollary 4.3: Consider the function g(s) := (1+ s
m)−α so that k(x, x′) = g(‖x−x′‖2

2).
Then [1, Eq. 29.3.11] shows that g is given by

g(s) =
(
1 +

s

m

)−α
=

mα

Γ(α)

∫
R+

e−suuα−1e−mudu s ∈ R
+.

By the change of variable u := t2 we obtain

(
1 +

s

m

)−α
=

2mα

Γ(α)

∫
R+

e−st2t2α−1e−mt2dt.

Consequently, for the Borel probability measure μ := 2mα

Γ(α) t
2α−1e−mt2dt, we have μ({0}) = 0 and

k = kμ. As in the proof of Corollary 4.2 we have Ak(λ) ≤ Et∼μAt(λ) and At(λ) ≤ Cd,β(λtd + t−β)
where Cd,β is a constant depending only on (d, β). Since for κ > −2α we have

Et∼μtκ =
2mα

Γ(α)

∫
R+

tκ+2α−1e−mt2dt = m−κ
2
Γ(κ

2 + α)
Γ(α)

,

we conclude, for 2α − β > 0, that

Ak(λ) ≤ Et∼μAt(λ) ≤ Cd,β(λEt∼μtd + Et∼μt−β) = Cd,β

(
λm− d

2
Γ(d

2 + α)
Γ(α)

+ m
β
2
Γ(α − β

2 )
Γ(α)

)
.

Since Γ(α− β
2 ) achieves small values near 2α−β = 1, but gets large as 2α−β ↓ 0, we will only use

this inequality when 2α−β ≥ 1. This establishes the first assertion. When 2α−β < 1, we proceed
as in the proof of Corollary 4.2. To that end, split the domain of integration into R

+ = [0, b)∪[b,∞).

Then, since σ
α−β

2
−1

1 ≤ σ
α−β

2
−1

2 , for σ1 ≥ σ2 > 0, we have

∫
[b,∞)

t−βdμ(t) =
2mα

Γ(α)

∫
[b,∞)

t2α−β−1e−mt2dt =
m

β
2

Γ(α)

∫
[mb2,∞)

σα−β
2
−1e−σdσ

≤ b2α−β−2mα−1

Γ(α)

∫
[mb2,∞)

e−σdσ

=
b2α−β−2mα−1e−mb2

Γ(α)

≤ b2α−β−2mα−1

Γ(α)
,

and ∫
[0,b)

dμ(t) =
2mα

Γ(α)

∫
[0,b)

t2α−1e−mt2dt =
1

Γ(α)

∫
[0,mb2)

σα−1e−σdσ

≤ 1
Γ(α)

∫
[0,mb2)

σα−1dσ

=
b2αmα

αΓ(α)
.

Therefore, using each inequality At(λ) ≤ Cd,β(λtd + t−β) and Ak(λ) ≤ 1 on different components
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of the split R
+ = [0, b) ∪ [b,∞), we obtain

Ak(λ) ≤ Et∼μAt(λ)

≤ Cd,β

∫
[b,∞)

(
λtd + t−β

)
dμ(t) +

∫
[0,b)

dμ(t)

≤ λCd,βEt∼μtd + Cd,β

∫
[b,∞)

t−βdμ(t) +
∫

[0,b)
dμ(t)

≤ λCd,βm− d
2
Γ(d

2 + α)
Γ(α)

+ Cd,β
b2α−β−2mα−1

Γ(α)
+

α−1b2αmα

Γ(α)
.

Setting b := m
− 1

β+2 we obtain b2αmα = b2α−β−2mα−1 = m
αβ

β+2 and so conclude that

Ak(λ) ≤ Cd,β

(
λm− d

2
Γ(d

2 + α)
Γ(α)

+
m

αβ
β+2

Γ(α)

)
+

α−1m
αβ

β+2

Γ(α)
.

Adjusting the value of Cd,β establishes the assertion.

Proof of Theorem 4.5: First observe that 1 ∈ H0(Rd), the RKHS associated with the kernel
k(x, x′) = 1, x, x′ ∈ R

d. To prove the assertion, assume to the contrary that 1 ∈ Hμ(Rd). Then by
Theorem 6.1 there must exist a γ > 0 such that

γ2kμ − 1 = γ2
Et∼μkt − 1 � 0 (21)

where positive definiteness (� 0) is defined in (15). Now consider c > 0 and n points xi ∈ R
d, i =

1, .., n such that ‖xi − xj‖2 ≥ c, i �= j. If we let ηi := 1
n , i = 1, .., n we obtain∑

i,j=1,..,n

(
γ2kμ(xi, xj) − 1(xi, xj)

)
ηiηj = γ2

Et∼μ

∑
i,j=1,..,n

kt(xi, xj)ηiηj − 1 .

Let t∗ > 0 and split the expectation on the right-hand side into

Et∼μ

∑
i,j=1,..,n

kt(xi, xj)ηiηj =
∫

t<t∗

( ∑
i,j=1,..,n

kt(xi, xj)ηiηj

)
dμ(t)+

∫
t≥t∗

( ∑
i,j=1,..,n

kt(xi, xj)ηiηj

)
dμ(t) .

(22)
Now observe that the integrand in the t < t∗ is bounded by 1. Moreover, in the t ≥ t∗ term we
observe that for i �= j we have

kt(xi, xj) ≤ e−c2(t∗)2 ≤ 1
e
c−2(t∗)−2.

Consequently, we obtain

Et∼μ

∑
i,j=1,..,n

kt(xi, xj)ηiηj ≤ μ
(
[0, t∗)

)
+

μ
(
[t∗,∞)

)
n

(
1 + (n − 1)

1
e
c−2(t∗)−2

)
.

Therefore, setting c := 1
t∗

√
n−1

e we obtain

∑
i,j=1,..,n

(
γ2kμ(xi, xj) − 1(xi, xj)

)
ηiηj ≤ γ2

(
μ
(
[0, t∗)

)
+

2μ(R+)
n

)
− 1

Since μ is a finite measure it follows (see e.g. [6, Thm. 3.2]) that limt∗→0 μ
(
[0, t∗)

)
= μ({0}) = 0.

Consequently we can choose t∗ small enough and n large enough to contradict (21).
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Proof of Lemma 4.6: From (14) we know that, for all 0 < α1 ≤ α2 and t > 0, we have Hα1t ⊂
Hα2t and that

‖id : Hα1t → Hα2t‖ ≤
(α2

α1

) d
2
.

Moreover, it is trivial to observe that these relationships hold also for t = 0. Consequently, Theorem
6.1 implies that, for all 0 < α1 ≤ α2 and t ≥ 0, we have(α2

α1

)d
kα2t − kα1t � 0.

It then follows from Lemma 6.2 that(α2

α1

)d
kα∗

2μ − kα∗
1μ = Et∼μ

((α2

α1

)d
kα2t − kα1t

)
� 0.

The assertion then follows from Theorem 6.1.

Proof of Theorem 4.7: By (14) we know that for all 0 < t ≤ t∗ we have Ht ⊂ Ht∗ and that

‖id : Ht → Ht∗‖ ≤ (
t∗
t

) d
2 and so by Theorem 6.1 we have

(
t∗
t

)d
kt∗ − kt � 0. Consequently by,

Lemma 6.2 we have that((
t∗

)d
Et∼μt−d

)
kt∗ − kμ = Et∼μ

(( t∗

t

)d
kt∗ − kt

)
� 0

and conclude the assertion from Theorem 6.1.

Proof of Theorem 4.8: The existence of such intervals follows by decomposing the positive half
space into a countable sequence of non-overlapping intervals. For the last assertion, let H = L2(Rd)
and consider the feature maps (Φt)t∈R+ defined at the beginning of Section 4. Let [t1, t2] be any
interval such that μ([t1, t2]) > 0 and, for s > 0, let Ws : L2(Rd) → L2(Rd) be the Gauss-Weierstraß
operator defined by

(
Wsg

)
(x) := (πs)−

d
2

∫
Rd

e−s−1‖y−x‖2
2g(y)dy, x ∈ X, g ∈ L2(Rd).

Fix f ∈ Ht1 and g ∈ L2(Rd) such that f := Φ∗
t1g. From [29, Prop. 4.46] we utilize the fact that

Ht1 ⊂ Ht, t ≥ t1 and that the inclusion map idt1,t : Ht1 → Ht satisfies

idt1,t ◦ Φ∗
t1 = Φ∗

t

( t

t1

) d
2
W 1

2
(t2−t21), t > t1 . (23)

Define the function f : R
+ → L2(Rd) by

f(t) :=

⎧⎪⎪⎨
⎪⎪⎩

g, t = t1(
t
t1

) d
2 W 1

2
(t2−t21)g , t1 < t ≤ t2

0 , t /∈ [t1, t2] .

Since f is continuous on [t1, t2] and 0 elsewhere it follows that it is L2(Rd)-measurable. Moreover,
Young’s inequality [15, Thm. 20.18] implies that

‖f(t)‖2
L2(Rd) ≤

( t

t1

)d‖g‖2
L2(Rd), t ∈ R

+
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and therefore

‖f‖2
L2(μ,H) = Et∼μ‖f(t)‖2

L2(Rd) ≤ ‖g‖2
L2(Rd)t

−d
1

∫
[t1,t2]

tddμ(t) ≤ ‖g‖2
L2(Rd)

( t2
t1

)d
μ([t1, t2]) < ∞. (24)

Consequently, f ∈ L2(μ,H). However, Equation (23) implies that for all t1 < t ≤ t2 we have

Φ∗
t f(t) = Φ∗

t

( t

t1

) d
2
W 1

2
(t2−t21)g = Φ∗

t1g = f.

Since Φ∗
t f(t) = 0, t /∈ [t1, t2], we conclude that, for all x ∈ X, we have

(
Ψ∗f

)
(x) = Et∼μ

((
Φ∗

t f(t)
)
(x)

)
= μ([t1, t2])f(x),

that is, Ψ∗f = μ([t1, t2])f. Since f ∈ Ht1 was arbitrary it follows that Ht1 ⊂ Hμ. Moreover, using

‖μ([t1, t2])f‖2
Hμ

= inf
f∈L2(μ,H)

μ([t1,t2])f=Ψ∗f

‖f‖2
L2(μ,H)

and
‖f‖2

Ht1
= inf

g∈L2(Rd)
f=Φ∗

t1
g

‖g‖2
L2(Rd)

it follows from (24) that

‖μ([t1, t2])f‖2
Hμ

≤ t−d
1 ‖f‖2

Ht1

∫
[t1,t2]

tddμ(t).

establishing the bound on the inclusion.

Proof of Corollary 4.9: Let k = kμ where μ is a finite representing measure guaranteed to exist
by Theorem 1.1. The nonconstant assumption implies that μ(0,∞) > 0. It then follows from
Theorem 4.8 that there exists a t∗ > 0 such that Ht∗(Rd) ⊂ Hμ(Rd). Observe that [29, Thm. 4.63]
implies that Ht∗(Rd) is dense in Lp(ν) for all p ≥ 1 and all finite measures on R

d. Consequently,
it follows from Ht∗(Rd) ⊂ Hμ(Rd) that the same is true for Hμ(Rd) thus establishing the first
assertion. Now assume X is compact. Since [29, Cor. 4.58] implies that Ht∗ is universal, the
universality of Hμ follows from Ht∗ ⊂ Hμ. For the third assertion observe that [29, Prop. 4.46]
implies that Ht1 ⊂ Ht2 for all t1 ≤ t2. This combined with the fact the assumptions imply we can
choose t1 in Theorem 4.8 to be as large as we like completes the proof. Finally, by considering the
least squares loss in [29, Theorem 5.31 & Corollary 5.34], the denseness of Hν in L2(ν) for all finite
measures ν on R

d, implies that kμ is strictly positive definite.

6 Appendix

We will use the following Theorem of Saitoh [24, Thm. 6, Pg. 37], based on the results of Aronszajn
[3, Thms. I & II], connecting positive definiteness (15) and embedding constants.

Theorem 6.1 Let k1, k2 be positive definite functions on X. Then

Hk1 ⊂ Hk2
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if and only if there exists a constant γ > 0 such that

γ2k2 � k1

and the minimum of such constants is the norm of the inclusion

I : Hk1 → Hk2 .

Lemma 6.2 Let X be a set, and T measurable space equipped with a measure μ. Let (kt)t∈T

be a family of positive definite functions on X which is integrable with respect to μ. That is,
kt � 0, t ∈ T and t �→ kt(x, x′) is integrable with respect to μ for all x, x′ ∈ X. Then

Et∼μkt � 0 .

Proof: Consider n ∈ N, xi ∈ X, ai ∈ R, i = 1, .., n. By assumption, for all t ∈ T , we have

n∑
i,j=1

aiajkt(xi, xj) ≥ 0 .

Since the sum is finite, we find that

n∑
i,j=1

aiaj

(
Et∼μkt

)
(xi, xj) =

∫ ( n∑
i,j=1

aiajkt(xi, xj)
)
dμ(t) ≥ 0 .

Theorem 6.3 Let E be a Banach space, μ a probability measure on a measurable space (T, Σ), and
let f : T → E be a Bochner integrable function. Also let F : E → R be a continuous convex function.
Then the integral Eμ(F ◦ f) exists (with possible value +∞) and we have Jensen’s inequality

F (Eμf) ≤ Eμ(F ◦ f)

where, on the left, Eμ denotes Bochner integration.

Proof: We follow the proof for real Borel functions in [28, Pg. 192]. The assumptions and [5,
Cor. 2.1] imply that F is subdifferentiable everywhere. That is ∂F (f) �= ∅, f ∈ E, where ∂F (f) is
the subdifferential of F at f . Then for z0 ∈ E, z∗ ∈ ∂F (z0) and for all t ∈ T we have(

F ◦ f
)
(t) = F (f(t)) ≥ F (z0) + z∗

(
f(t) − z0

)
.

Now since
Et∼μz∗

(
f(t) − z0

)
= z∗

(
Et∼μf(t) − z0

)
> −∞

it follows that the function F ◦ f is bounded below by an integrable function. Since F is continuous
the function F ◦f is Borel measurable. Consequently, we conclude from [4, Thm. 1.5.9] that Eμ(F ◦f)
exists. Therefore we obtain

Eμ(F ◦ f) ≥ F (z0) + Et∼μz∗
(
f(t) − z0

)
= F (z0) + z∗

(
Eμf − z0

)
and substituting z0 := Eμf we obtain the assertion.
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