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Abstract

We develop a hypothesis testing framework for the formulation of the problems of 1) the
validation of a simulation model and 2) using modeling to certify the performance of a physical
system. These results are used to solve the extrapolative validation and certification problems,
namely problems where the regime of interest is different than the regime for which we have
experimental data. We use concentration of measure theory to develop the tests and analyze
their errors. This work was stimulated by the work of Lucas, Owhadi, and Ortiz [1] where
a rigorous method of validation and certification is described and tested. In Remark 2.5 we
describe the connection between the two approaches. Moreover, as mentioned in that work these
results have important implications in the Quantification of Margins and Uncertainties (QMU)
framework. In particular, in Remark 2.6 we describe how it provides a rigorous interpretation
of the notion of confidence and new notions of margins and uncertainties which allow this
interpretation. Since certain concentration parameters used in the above tests may be unkown,
we furthermore show, in the last half of the paper, how to derive equally powerful tests which
estimate them from sample data, thus replacing the assumption of the values of the concentration
parameters with weaker assumptions.

1 Introduction

Validation of simulation models is clearly important and much substantial work has been directed
towards it, see e.g. [2, 3, 4, 5, 6, 7, 8] and the references therein. Moreover, the problem appears
to go straight to the heart of the philosophy of science (see e.g. [9, 10, 11]). Indeed, [12] assert
that validation is impossible, and [1] describe a rigorous method for it. On the other hand, it
appears that while all agree that validation is an important and difficult problem, few agree on
what the problem actually is. In the words of G. K. Chesterton [13, pg. ix], ”It isn’t that they
can’t see the solution. It is that they can’t see the problem.” In this paper we formulate examples
of both the problems of validation and certification as problems of constructing hypothesis tests. A
straightforward analysis using concentration of measure theory then provides tests and guarantees
on their performance.

Although hypothesis tests have been used in validation before, e.g. in [14, 15], our formulation
is quite different. In particular, we formulate null and alternate hypotheses which represent a
flexibility in the customer’s specification of a performance design threshold. We develop tests
that require a clear delineation of assumptions and then use concentration of measure inequalities
to analyze the performance of the tests. These results are then used to solve the extrapolative
validation and certification problems, namely problems where the deployment regime is different
than the experimental regime. This framework is then compared with that of Lucas, Owhadi
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and Ortiz [1]. As mentioned in that work, these results also have important implications in the
Quantification of Margins and Uncertainties (QMU) framework discussed in detail in [16, 17, 18].
In particular, in Remark 2.6 we discuss how these results provide a rigorous interpretation of
the notion of confidence and a new notion of uncertainties which allow this interpretation. Since
certain concentration parameters used in the above tests may be unknown, we furthermore show
how to derive equally powerful tests which estimate them from sample data, thus replacing the
assumption of the values of the concentration parameters with much weaker assumptions. This
humble beginning needs to be refined so that it fits better with real applications. It should also
incorporate some of the conclusions and structure of the above-mentioned works, but we leave that
for the future. Let us now describe our framework and formulations. At a high level we say that
validation is the assessment of the quality of a model of a physical system and certification is using
modeling to assess the performance of a physical system. To make these notions more specific,
consider the following general framework which will be used for both validation and certification.

Consider the case of a real-valued random variable U that describes the performance of a system
and a customer who would like to have a quantitative guarantee on this performance. You inform
the customer that you can consider a test of the hypothesis

P
(
U ≥ a

) ≥ p

where a is the performance design threshold and p is a level of confidence. When pressed to provide
the specific values of the parameters a and p the customer may provide values, for example a = 1000
and p = .95. However, if you then ask him whether a = 950 and p = .93 would be acceptable, he
might respond in the affirmative. Consequently, a more realistic test might be to test

P
(
U ≥ A

) ≥ P (1)

where A and P are sets instead of real numbers. However, what (1) actually means and how to
construct and analyze a test for it are not clear. To resolve this problem, let us introduce some
notation. Let U denote the set of real-valued random variables. For a ∈ R, p ∈ (0, 1) define the
null hypothesis by

Ha,p :=
{
U ∈ U : P(U ≥ a) ≥ p

}
and the alternative by

Ka,p :=
{
U ∈ U : P(U ≥ a) < p

}
.

Consider a′ ≤ a, p′ ≤ p and suppose that U ∈ Ha,p ∩ Ka′,p′ . Then, since

p′ > P(U ≥ a′) ≥ P(U ≥ a) ≥ p

is a contradiction, we conclude that

Ha,p ∩ Ka′,p′ = ∅, a′ ≤ a, p′ ≤ p . (2)

Therefore, when a′ ≤ a and p′ ≤ p we can consider a test of Ha,p against Ka′,p′ . Now let a and p be
specified and specify tolerance intervals A and P such that A ≤ a and P ≤ p, where the notation
implies that a ∈ A and p ∈ P . Then by (2) we can define a test of (1) by testing Ha,p against Ka′,p′

for some a′ ∈ A and p′ ∈ P . Given the freedom the tolerance intervals allow in the choice of a′ and
p′, we seek to choose them to our advantage.

Let us first consider the case where A = {a}, namely there is no tolerance to changing the
design criterion. We wish to construct a test of Ha,p against Ka,p′ for p′ ∈ P . Let Ui, i = 1, .., n
be i.i.d. samples from U . We can form a test by composing the sample data Ui, i = 1, .., n with
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the indicator function Ia : R → {0, 1} defined by Ia(u) = 1, u ≥ a and Ia(u) = 0, u < a to obtain
Bernoulli random variables Ia ◦ Ui. That is, we simply evaluate whether the sample points are
greater than or equal to a or not. We form a test of Ha,p against Ka′,p′ by forming the binomial
test of Hp against Kp′ where

Hp := {X : P(X = 1) = r, P(X = 0) = 1 − r, r ≥ p}

and
Kp′ := {X : P(X = 1) = r, P(X = 0) = 1 − r, r < p′}.

By the Neyman-Pearson Lemma [19, Thm. 3.1] and [19, Thm. 3.2] we know there exists a uniformly
most powerful test of Hp against Kp′ (see e. g. [19, Ch. 3]). However, this uniformly most powerful
test is characterized through the binomial distribution. The statement of approximate tests with
rigorous guarantees on their type I and II errors appears, in principle, to be available but evidently
it is no easy matter. Rigorous bounds connecting the binomial distribution to the normal can
be found in Feller [20] and to the Poisson distribution in Anderson and Samuels [21]. Guarantees
outside of the range of applicability of these results can be found in Slud [22]. Approximations to the
optimal test parameters have been derived and studied empirically in Shore [23, 24] and Chernoff
[25] has analyzed the asymptotics, in particular when p′ is close to p. Although a comprehensive
rigorous analysis of this case should be completed, that is not our goal here. Instead we consider
the case where P = {p}, where there is no tolerance to the value p, but a nontrivial tolerance in the
design criteria A. That is, we test Ha,p against Ka′,p for some a′ ∈ A. For simplicity we remove the
p from the notation of the hypothesis spaces, that is, from now on Ha,p and Ka′,p are denoted by
Ha and Ka′ respectively. We will show that reducing the spaces of random variables further allows
the development and analysis of efficient tests and that this analysis is quite elementary. The full
problem of testing Ha,p against Ka′,p′ for a′ ∈ A and p′ ∈ P where both tolerance intervals are
nontrivial might be accomplished through a combination of the above mentioned analysis and the
results herein. To reduce the null and alternative hypothesis sets we will consider random variables
U which are generated as U = F (X) by real functions F : X → R where each X is a vector random
variable. We make assumptions on this set of functions and vector random variables that guarantee
the degree of concentration of U about its mean in terms of a concentration parameter D (all this
will be clarified below). We denote by UD the resulting space of real-valued random variables and
reduce the null and alternative hypothesis spaces accordingly. Having performed this reduction, we
will demonstrate how to construct tests of P(U ≥ A) ≥ p in terms of D and describe their type I
and II errors. In addition, we observe that if A is large enough compared to D we can obtain tests
with small type I and II errors. We disregard measurability considerations. In many applications,
we want to validate a model or certify a physical system in the deployment regime where the real
physical system is impossible or expensive to sample. In Section 3 we obtain the first results, as
far as we can tell, for this extrapolation problem.

To apply these results to validation, we let U = F (X) denote a measure of a model’s fit to
a physical system with respect to a quantity of interest. For example if, for the value x of the
random variable X, the model predicts the strength of a material to be sM (x) and the physical
system obtains the strength sPh(x) then we might define F (x) := 1

|sM (x)−sPh(x)| . Then surpassing
the performance threshold a is equivalent to |sM (x)− sPh(x)| ≤ 1

a . We apply the above mentioned
result to obtain a solution to the validation problem of constructing a test of Ha against Ka′ using
samples from F (X) which has small type I and II errors. To apply this result to certification, we
let F (X) be the performance of the physical system and M(X) be the performance of the physical
system predicted by the model. For example, let F (x) := sPh(x) be the strength of the physical
system and M(x) := sM (x) be the strength of the physical system simulated by the model. We

3



apply the above mentioned result to obtain a solution to the certification problem of constructing
a test of Ha against Ka′ using samples from F (X) and M(X) which has small type I and II errors.
Using the above mentioned tests, we observe in a quantitative way the intuitive result that if the
validation diameter DF−M is much smaller than the model diameter DM , then we need much fewer
samples of the real physical system F than the model M to certify the performance of F . In Remark
2.5 we describe the connection to the rigorous validation and certification results of Lucas, Owhadi,
and Ortiz [1]. These results generalize easily to other concentration inequalities. In particular, using
concentration theorems for non i.i.d. sampling we can, with a substantial increase in complexity,
obtain good tests when the empirical data are not generated i.i.d. or when the components of
the random vector X are not independent. These tests and bounds on their performance require
knowing the values of the diameter DF for validation and DF−M and DM for certification. Since
good approximations to these values may not be known in practice, we show, beginning in Section
4, how to estimate them to derive equally powerful tests, replacing the assumption of the values of
the concentration parameters with much weaker assumptions. These tests provide validation and
certification tests with estimated diameters.

2 Validation and Certification with Known Diameters

Let us first describe the concentration parameter D mentioned above, Let (Ω,F , P) denote a prob-
ability space and consider a product space X = X 1 × · · · × Xm. We call a mapping X : Ω → X
a random vector with range X and will abuse notation by also using the symbol P for the image
probability measure on X . For a function F : X → R we define the partial diameters to be

DF
j = sup

xk=x′
k, k �=j

(
F (x) − F (x′)

)
j = 1, ..,m (3)

where the supremum is taken over all x, x′ ∈ X which differ only in their j-th component. Let
D2

F :=
∑m

j=1 (DF
j )2 define the McDiarmid diameter DF of the function F . For a vector random

variable X and function F : X → R we consider the random variable F ◦X : Ω → R which we also
denote by F . For the random variable F we have McDiarmid’s inequality [26, Thm. 3.1, pg. 206]:

Theorem 2.1 Let X = X 1 × · · · × Xm be a Cartesian product and let F : X → R have the
McDiarmid diameter DF . Then for any product probability measure P = μ1 ⊗ · · · ⊗ μm we have

P(F − EF ≥ r) ≤ e
− 2r2

D2
F

If, for 0 < t < 1, we define

rt :=
DF√

2

√
log t−1

then we have the following useful inequalities:

P(F − EF ≥ rt) ≤ t

P(F − EF > rt) < t

P(F − EF ≤ −rt) ≤ t

P(F − EF < −rt) < t.

Since this theorem’s only dependence on F and X is through the parameter DF we can define the
subset UD ⊂ U consisting of all real-valued random variables generated as U = F (X) for some F
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and X such that DF ≤ D. Let HD
a := Ha ∩ UD and KD

a := Ka ∩ UD denote null and alternative
generated in this way and consider testing HD

a against KD
a′ . We are now ready to state our main

result which we then use to establish both validation and certification results. We describe a test
of HD

a against KD
a′ for a − a′ bounded below in terms of D and p. Therefore if [a′, a] ⊂ A, then

the following result provides a test of P
(
U ≥ A

) ≥ p, with bounds on its errors. Note that the
test is in terms of the value of a function F ′ : Y → R for some random vector Y with the only
constraint being EF ′ = EU . All tests in this work accept the null HD

a by producing T = 1 and
reject otherwise. Recall that the type I error is defined by θ1(U) := P(T = 0), U ∈ HD

a and the
type II error is defined by θ2(U) := P(T = 1), U ∈ KD

a′ .

Theorem 2.2 Let 0 < p < 1, D,D′ > 0 and consider U ∈ UD. Moreover, consider a vector
random variable Y and a function F ′ : Y → R with diameter DF ′ ≤ D′ such that EF ′ = EU . For
0 < t < 1 define rt := D√

2

√
log t−1 and r′t := D′√

2

√
log t−1. Let 0 < δ1, δ2 < 1, and let a and a′

satisfy a− a′ ≥ rp + r1−p + r′δ1 + r′δ2 so that the interval [a′ + r1−p + r′δ2 , a− rp − r′δ1 ] is nonempty.
Let b ∈ [a′ + r1−p + r′δ2 , a − rp − r′δ1 ]. Then the test T of HD

a against KD
a′ defined by

T :=

{
1, F ′(y) ≥ b

0, F ′(y) < b

satisfies
θ1(U) < δ1 ,

θ2(U) ≤ δ2 .

The condition EF ′ = EU of Theorem 2.2 can be easily satisfied when i.i.d. samples are available.
Therefore, in this case, it is straightforward to use Theorem 2.2 to define tests, with guarantees on
their errors, for both validation and certification.

Corollary 2.3 (Validation) Let U = F (X) and suppose D ≥ DF . Let F (Xi), i = 1, .., n be i.i.d.
samples of F (X) and define 〈F 〉n := 1

n

∑n
i=1 F (Xi) to be the sample mean. Let 0 < p, δ1, δ2 <

1 and for 0 < t < 1 define rt := D√
2

√
log t−1. Moreover, let a and a′ satisfy a − a′ ≥ rp +

r1−p + 1√
n
rδ1 + 1√

n
rδ2 so that the interval [a′ + r1−p + 1√

n
rδ2 , a − rp − 1√

n
rδ1 ] is nonempty. Let

b ∈ [a′ + r1−p + 1√
n
rδ2 , a − rp − 1√

n
rδ1 ] and consider the test T of HD

a against KD
a′ defined by

T :=

{
1 , 〈F 〉n ≥ b

0 , 〈F 〉n < b .

Then we have
θ1(U) < δ1 ,

θ2(U) ≤ δ2 .

As discussed in the introduction, if F (X) represents a physical system and M(X) a model of
that system we can consider how to test the performance of F by decomposing F (X) = M(X) +(
F (X)−M(X)

)
into the model component and the model deviation component. If the test accepts

we obtain certification. We now show how to sample the model and the model deviation to test the
performance of the physical system. In particular, the following result shows that if the validation
diameter DF−M is much smaller then the model diameter DM , then we need much fewer samples
of the real physical system F than the model M to certify the performance of F . It is phrased in
terms of a general decomposition F = F1 + F2.
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Corollary 2.4 (Certification) Let U = F (X) where F := F1 + F2 is the sum of two functions
with diameters DF1 and DF2. Let D,D1, and D2 satisfy D1 ≥ DF1, D2 ≥ DF2 and D ≥ D1 + D2.
Let F1(Xi), i = 1, .., n1 be i.i.d. samples of F1(X) and define 〈F1〉n1 := 1

n1

∑n1
i=1 F1(Xi) to be

the sample mean. Also let F2(Xi), i = n1 + 1, .., n1 + n2 be i.i.d. samples of F2(X) and define
〈F2〉n2 := 1

n2

∑n1+n2
i=n1+1 F2(Xi) to be the sample mean of the second set of samples. For 0 < t < 1

define

ρt :=
1√
2

√
D2

1

n1
+

D2
2

n2

√
log t−1

and
rt :=

D√
2

√
log t−1

Let 0 < δ1, δ2 < 1 and suppose that a and a′ satisfy a−a′ ≥ rp +r1−p +ρδ1 +ρδ2 so that the interval
[a′ + r1−p + ρδ2 , a − rp − ρδ1 ] is nonempty. Let b ∈ [a′ + r1−p + ρδ2 , a − rp − ρδ2 ] and consider the
test T of HD

a against KD
a′ defined by

T :=

{
1 , 〈F1〉n1 + 〈F2〉n2 ≥ b

0 , 〈F1〉n1 + 〈F2〉n2 < b .

Then U ∈ UD and we have
θ1(U) < δ1 ,

θ2U) ≤ δ2 .

Moreover, suppose D2 ≤ D1, n2 ≥ D2
D1

n1 and define

ρt :=
D1√
n1

√
log t−1 (4)

in the above conditions on a, a′ and the test parameter b. Then for any D ≥ 2D1 we have U ∈ UD,
and

θ2(U) < δ1 ,

θ2(U) ≤ δ2 .

Remark 2.5 (Connection with Lucas, Owhadi and Ortiz [1]) If in Theorem 2.2 we define
b := a′ + r1−p + r′δ2 in terms of a performance value a′ the condition for acceptance in Theorem 2.2
can be written 〈F 〉n − a′ − r′δ2 ≥ r1−p which amounts to

〈F 〉n − a′ − D′√
2

√
log δ2

−1

D ≥
√

1
2

log (1 − p)−1 .

For the case of validation in Corollary 2.3 we have DF ′ ≤ 1√
n
DF and so with p = 1 − ε, δ2 = ε′,

D := DF , and D′ := 1√
n
DF the test of Corollary 2.3 amounts essentially (with a

√
2 better

multiplicative factor in last term on the left) to the validation criterion of Lucas, Owhadi, and
Ortiz [1, Eqn. 40] for the exact model with single performance measure (their Scenario 3). For
certification, we can apply Corollary 2.4 with the choice F1 as their F and F2 as their G−F . Using
the inequality DF1+F2 ≤ DF1 + DF2 and setting n1 = n2 and δ2 = 2ε′ we again obtain essentially
(in a similar way as mentioned above) the certification criteria of [1, Eqns. 58&59]. Moreover,
Corollaries 2.3 and 2.4 show we can interpret the certification criteria of [1] as guarantees that the

6



type II error is less than δ2. If we then select a such that a − a′ ≥ rp + r1−p + ρδ1 + ρδ2 we can
also assert that the type I error is less than δ1. In particular, if the design parameter value a′ can
tolerate being moved so that a − a′ ≥ rp + r1−p + ρδ1 + ρδ2 with δ1 and δ2 small, this criterion
amounts to a hypothesis test with type I and II errors bounded by δ1 and δ2 respectively. In this
sense the criteria of [1] appear to correspond with our hypothesis test but with the roles of the
hypothesis spaces Ha and Ka′ reversed.

Remark 2.6 (Connection with QMU) For a detailed discussion of the QMU framework please
see [16, 17, 18]. In the QMU framework, the confidence is evaluated in terms of a ratio M

U where
M is a margin and U is an uncertainty. The National Research Council of the National Academies
report [16, Finding 1-1] states that ”QMU is a sound and valuable framework that aids the assess-
ment and evaluation of the confidence in the nuclear weapons stockpile.” However it also states
”There are serious and difficult problems to be resolved in uncertainty quantification, however,
including the physical phenomena that are modeled crudely or not at all, the possibility of un-
known unknowns, lack of computing power to guarantee the convergence of codes, and insufficient
attention to validating experiments. Finally, they state that ”Even if the uncertainties arising from
all of the different sources were estimated, their aggregation into an overall uncertainty for a given
quantity of interest is a problem that needs further attention.” Although we do not suggest that
we can answer all these question now we can make some conclusions along these lines using the
discussion of Remark 2.5. For validation, consider the ratio

〈F 〉n − a′

D
where the numerator is a ”margin” and the denominator is an ”uncertainty”. The inequality

〈F 〉n − a′

D ≥
√

1
2

log (1 − p)−1 +
1√
2n

√
log δ2

−1

shows two things. First it shows how we can interpret confidence. That is, if P(F ≥ a′) < p, namely
if the performance is insufficient, then with probability less than δ2 will we accept the performance
as sufficient. Namely, our confidence is δ2. Moreover, the precise definition of the uncertainty
parameter D shows how this parameter is aggregated so as to maintain the interpretation of the
confidence statement. For the certification problem similar comments also apply but we get the
added benefit of seeing how modeling uncertainties and validation uncertainties are aggregated and
combined and how they influence the number of validation experiments needed compared to the
number of modeling runs.

We have used McDiarmid’s inequality Theorem 2.1 as the model for concentration in this paper,
but that is not necessary. All that was needed is a concentration parameter DF which scales a certain
way with sampling. In particular, concentration theorems that do not require i.i.d. sampling, for
example the martingale difference inequality [26, Thm. 3.14, Page 224], can be applied to derive
results similar, but more complex, to those obtained. Another example of a concentration theorem
is the following for Lipschitz functions, [27, Cor. 1.17]:

Theorem 2.7 Let X = X 1 × · · · × Xm be the Cartesian product of metric spaces (Xi, di) with
diameters Di, i = 1, ..,m and let D2

X :=
∑m

i=1 D2
i . Let F : X → R be Lipschitz with respect

the �1 metric d :=
∑m

i=1 di with Lipschitz constant |F |. Then for any product probability measure
P = μ1 ⊗ · · · ⊗ μm we have

P(F − EF ≥ r) ≤ e
− r2

2|F |2D2
X .
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The following, easy to prove, proposition shows that the previous results also apply using the
Lipschitz concentration Theorem 2.7.

Proposition 2.8 Consider the concentration result and notation of Theorem 2.7. Then Theorem
2.2 and Corollaries 2.3 and 2.4 hold with D replaced by 2|F |DX .

3 Extrapolative Validation and Certification

In this section we consider when we want to validate a model or certify a physical system in a
regime where the real physical system is impossible or expensive to sample. That is, suppose we
wish to validate or certify a random variable F̂ (X̂) which is expensive or impossible to sample but
are able to sample a related random variable F (X). When samples from F̂ (X̂) are unavailable we
have the following validation result in terms of the Kolmogorov distance

d(F, F̂ ) := max
b

∣∣P(F ≤ b) − P(F̂ ≤ b)
∣∣ (5)

between two random variables F and F̂ . The corresponding certification result is very similar, but
we omit it for brevity.

Theorem 3.1 (Extrapolative Validation) Let U = F (X) have McDiarmid diameter DF . Let
F (Xi), i = 1, .., n be i.i.d. samples of F (X) and define 〈F 〉n := 1

n

∑n
i=1 F (Xi) to be the sample

mean. Let 0 < p < 1, 0 < δp < min (p, 1 − p) and suppose that F̂ : X̂ → R satisfies

d(F, F̂ ) ≤ δp .

Let 0 < δ1, δ2 < 1 and for 0 < t < 1 define rH := 1√
2

√
log (p − δp)−1 + 1√

2n

√
log δ−1

1 and rK :=

1√
2

√
log (1 − p − δp)−1 + 1√

2n

√
log δ−1

2 . Then if a − a′ ≥ DF (rH + rK) the test of {P(F̂ ≥ a) ≥ p}
versus {P(F̂ ≥ a′) < p} defined by

T :=

{
1 , 〈F 〉n ≥ a −DF rH
0 , 〈F 〉n < a −DF rH

satisfies
θ1 ≤ δ1 ,

θ2 ≤ δ2 .

When samples from F̂ are available but more expensive than samples from F , we can use the sample
data to estimate the Kolmogorov distance between F and F̂ and then corporate the estimate in the
test as discussed in Section 4 and afterwords. The following estimate is efficient in the sense that
it uses the concentration of the Kolmogorov-Smirnov statistic of Dvoretzky, Kiefer and Wolfowitz
[28] improved to have a tight constant by Massart [29] (see also [30, Thm. 12.9]) as follows: Let n
i.i.d samples be taken from F and let Pn denote its empirical measure and let n′ ≤ n i.i.d samples be
taken from F̂ and let Pn′ denote its empirical measure. Then the Dvoretzky, Kiefer and Wolfowitz
Theorem states that

P
n
(
sup
b∈R

∣∣Pn(F ≤ b) − P(F ≤ b)
∣∣ > ε

)
≤ 2e−2nε2

and
P

n′(
sup
b∈R

∣∣Pn′(F̂ ≤ b) − P(F̂ ≤ b)
∣∣ > ε

)
≤ 2e−2n′ε2

.
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Let us define
dn,n′(F, F̂ ) := sup

b∈R

∣∣Pn(F ≤ b) − Pn′(F̂ ≤ b)
∣∣

as an estimator of the Kolmogorov distance d(F, F̂ ) defined in (5). Then since

|d(F, F̂ ) − dn,n′(F, F̂ )| =
∣∣∣sup
b∈R

∣∣P(F ≤ b) − P(F̂ ≤ b)
∣∣ − sup

b∈R

∣∣Pn(F ≤ b) − Pn′(F̂ ≤ b)
∣∣∣∣∣

≤ sup
b∈R

∣∣Pn(F ≤ b) − P(F ≤ b)
∣∣ + sup

b∈R

∣∣Pn′(F̂ ≤ b) − P(F̂ ≤ b)
∣∣

we use n′ ≤ n to conclude by a simple union bound that

P
n+n′(|d(F, F̂ ) − dn,n′(F, F̂ )| > ε

)
≤ P

n
(
sup
b∈R

∣∣Pn(F ≤ b) − P(F ≤ b)
∣∣ >

ε

2
)

+ P
n′(

sup
b∈R

∣∣Pn′(F̂ ≤ b) − P(F̂ ≤ b)
∣∣ >

ε

2
)

≤ 4e−
1
2
n′ε2

.

That is, we have
P

n+n′(|d(F, F̂ ) − dn,n′(F, F̂ )| > ε
) ≤ 4e−

1
2
n′ε2

.

whose confidence form is

P
n+n′

(∣∣∣d(F, F̂ ) − dn,n′(F, F̂ )
∣∣∣ >

√
2 ln 4 + 2 ln δ−1

n′

)
≤ δ . (6)

This estimation inequality (6) can be used, along the lines of Section 4 and afterword, to prove a
version of Theorem 3.1 where the estimate dn,n′(F, F̂ ) is used instead of the Kolmogorov distance
d(F, F̂ ). Moreover, since the test and its performance depend logarithmically on this estimate, we
should be able to obtain good tests where n′ is much smaller than n. In particular, we should be
able to obtain good tests if the Kolmogorov distance is small enough- instead of by assuming that
it is so. However, for brevity, we do not complete this program here but move to the estimation of
diameters in validation and certification tests.

4 Estimation of Diameters in Hypothesis Tests

The validation and certification results, Corollaries 2.3 and 2.4, require the value of the diameter
DF for validation and DF−M and DM for certification. In principle the modeling and domain
experts should have much to say about bounding these values. However, sample data should also
say something about them. With the eventual goal of combining expert knowledge about the
relevant diameters with information from sample data, we now proceed to describe how sample
data can be used to estimate these diameters. This will be accomplished through an estimation
procedure and the introduction of ”higher order” concentration parameters. To that end, we now
invert the concentration theorem to its ”confidence version” so that the diameters appear inside the
probability statement. This allows the comparison of the diameter with an estimable parameter
and a mechanism for incorporating estimates of these parameters in the concentration theorems
and therefore into the definitions of tests and the analysis of their performance.
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4.1 Diameters in Concentration Theorems

By a simple function inversion, McDiarmid’s inequality can be written

P

(
F − EF ≥ f(DF , δ)

)
≤ δ (7)

where f(r, δ) := r√
2

√
log δ−1. This inversion was used in the proof of the main Theorem 2.2. The

following two lemmas reformulate those parts of Theorem 2.2 which we will use as basic building
blocks for developing validation and certification tests with estimated diameters.

Lemma 4.1 Let 0 < p < 1 and a, a′ ∈ R and consider the functions fH : R
3 → R and fK : R

3 → R

defined by

fH(r, r′, δ) :=
r√
2

√
log p−1 +

r′√
2

√
log δ−1 − a ,

fK(r, r′, δ) :=
r√
2

√
log (1 − p)−1 +

r′√
2

√
log δ−1 + a′ .

Then for all 0 < δ < 1 and all F, F ′ ∈ U which satisfy EF ′ = EF , we have

P(F ′ ≤ −fH(DF ,DF ′ , δ)|F ∈ Ha) ≤ δ ,

P(F ′ ≥ fK(DF ,DF ′ , δ)|F ∈ Ka′) ≤ δ .

The following simple lemma shows how to use the results of Lemma 4.1 to construct hypothesis
tests with controlled errors. It is formulated in terms of the primary variable F , a test variable F ′,
and a vector �F of auxiliary variables.

Lemma 4.2 Let H,K ⊂ U be null and alternative hypothesis spaces and let k ∈ N and 0 < δ1, δ2 <
1. Consider functions gK , gH : Uk → R such that for all F, F ′ ∈ U there exists a vector �F of
auxiliary random variables F j , j = 1, .., k such that

P

(
F ′ ≤ −gH(�F )

∣∣F ∈ H
)
≤ δ1,

P

(
F ′ ≥ gK(�F )

∣∣F ∈ K
)
≤ δ2.

We call any such vector �F admissible for F, F ′. Now suppose F, F ′ ∈ U and consider any admissible
and vector �F . Consider the test T of F ∈ H against F ∈ K defined by

T :=

{
1 , F ′ > −gH(�F )
0 , F ′ ≤ −gH(�F )

(8)

Then if gH(�F ) + gK(�F ) ≤ 0 we have
θ1(T ) ≤ δ1,

θ2(T ) ≤ δ2.

In general, concentration theorems can be used to establish results like Lemma 4.1 and then
Lemma 4.2 can be used to establish a test and bound its errors. In particular, we see how the
main theorem, Theorem 2.2, with test point fixed at the right-hand side of the interval, can then

10



be obtained by a combined application of Lemmas 4.1 and 4.2: first apply Lemma 4.1 and then
apply Lemma 4.2 with H := Ha,K := Ha′ , �F := (F, F ′) and

gH(�F ) = gH(F, F ′) := fH(DF ,DF ′ , δ1) ,

gK(�F ) = gK(F, F ′) := fK(DF ,DF ′ , δ2) .

However, what is important here is that we are now in a position define tests which use estimates
of fH(DF ,DF ′ , δ1) and fK(DF ,DF ′ , δ2). Since we see no efficient way of estimating the McDiarmid
diameter DF of a function F but we do know something about the estimation of the usual diameter
DG of a function G defined by

DG := sup
x,x′∈X

(
G(x) − G(x′)

)
,

we ask whether we can estimate the McDiarmid diameter by estimating the usual diameters of a set
of auxiliary set of functions. To that end we first introduce a relationship between the McDiarmid
diameter and the usual diameters of a set of auxiliary observables. These latter diameters we will
then estimate using extreme value estimators in Section 4.2. Now, ignoring for the moment the
question of the attainment of suprema, if we define

F j(xj) := F (x∗
1, .., x

∗
j−1, xj , x

∗
j+1, .., x

∗
m)

where

(x∗
1, .., x

∗
j−1, x

∗
j+1, .., x

∗
m)

:= arg max
x1,..,xj−1,xj+1,..,xm

max
xj ,x′

j

(
F (x1, .., xj−1, xj , xj+1, .., xm) − F (x1, .., xj−1, x

′
j , xj+1, .., xm)

)

it follows that

D2
F =

m∑
j=1

D2
F j .

Namely the McDiarmid diameter is a function of diameters. However, this relation will only be
of use to us if the functions F j , j = 1, .., k are observable, namely, they can be evaluated. Now
suppose we are in possession of a set F j , j = 1, .., k auxiliary observables and let �D denote the
vector of their diameters. Suppose we also have functions gH and gK such that

fH(DF ,DF ′ , δ) ≤ gH( �D, δ) , 0 < δ < 1,

fK(DF ,DF ′ , δ) ≤ gK( �D, δ) , 0 < δ < 1.

Then since Lemma 4.1 asserts that for all 0 < δ < 1 we have

P
n
(
F ′ ≤ −fH

(
g(D), g′(D), δ

)∣∣H)
≤ δ ,

P
n
(
F ′ ≥ fK

(
g(D), g′(D), δ

)∣∣K)
≤ δ,

it follows easily that for all 0 < δ < 1 we have

P
n
(
F ′ ≤ −gH

(
�D, δ

)∣∣H)
≤ δ , (9)

P
n
(
F ′ ≥ gK

(
�D, δ

)∣∣K)
≤ δ, (10)

11



Consequently, we can apply Lemma 4.2 to obtain tests defined instead in terms of the estimable
functions gH

(
�D, δ

)
and gK

(
�D, δ

)
. Most importantly, the inequalities (9) remain valid with the

vector of diameters �D replaced by the vector of essential diameters. When the essential diameter is
much smaller than the given diameter, this difference can often offset the looseness corresponding
to the error associated with estimating the essential diameter using the empirical diameter.

Let us now give the first important example of auxiliary observables. In this case, they will be
none other than the functions F, F ′ themselves, but will require the introduction of new functions,
cF , cF ′ of F and F ′ which will have to be approximately known. To that end, define a coefficient
of the separability cF of the function F with respect to the m components of X :=

∏m
j=1 X j as

follows:

Definition 4.3 Let X :=
∏m

j=1 X j be a product and consider a function F : X → R, its diameter
DF , and its McDiarmid diameter DF . We define the coefficient of separability cF with respect to
the product X to be

cF :=
DF

DF
.

With this definition it is clear that if we define gH(DF , DF ′ , δ) := fH(cF DF , cF ′DF ′ , δ) and
gK(DF , DF ′ , δ) := fK(cF DF , cF ′DF ′ , δ), where we suppress the dependency on cF , cF ′ , we have

fH(DF ,DF ′ , δ) = gH(DF , DF ′ , δ) , 0 < δ < 1,

fK(DF ,DF ′ , δ) = gK(DF , DF ′ , δ) , 0 < δ < 1

and therefore

P
n
(
F ′ ≤ −gH

(
DF , DF ′ , δ

)∣∣H)
≤ δ ,

P
n
(
F ′ ≥ gK

(
DF , DF ′ , δ

)∣∣K)
≤ δ,

Although we have now introduced a new function cF which will have to be known or well
bounded, this function has nice properties, which we now describe, which make assuming its value
a weaker assumption than assuming the value of a McDiarmid diameter. Let us say that a map
φ :

∏m
j=1 X j → ∏m

j=1 X ′j is a diagonal bijection if it is a product map φ =
∏m

j=1 φj such that
φj : X j → X ′j is a bijection for all j = 1, ..,m. The following lemma shows that F �→ cF is a
bounded invariant under non-singular affine transformations F �→ aF + b of the function F and a
diagonal bijective invariant.

Lemma 4.4 The mapping F �→ cF is a diagonal bijective invariant. Moreover, we have

caF+b = cF , a, b ∈ R, a �= 0

and
1√
m

≤ cF ≤ √
m.

In Example 7.2 in the Appendix we describe the attainment of the the extreme case cF = 1√
m

and cF =
√

m: roughly, the lower bound is attained for functions which are separable in the m
components and the upper bound is obtained for a function related to the Euclidean metric1.

1In personal communication, L. Gurvits has demonstrated that nontrivial lower bounds may not exist when X is
not a product. For example it is easy to construct cases where the partial diameters are all zero and the diameter is
not.
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Lemma 4.2 states that conditions such as

P
n
(
F ′ ≤ −gH(D)

∣∣H)
≤ δ1 , (11)

P
n
(
F ′ ≥ gK(D)

∣∣K)
≤ δ2. (12)

and gH(D) + gK(D) ≤ 0 for functions of the essential diameter vector of auxiliary observables
are sufficient to develop a good test. In the above analysis this was accomplished by knowledge
about the coefficients of separability cF , cF ′ which allowed us to use the functions F and F ′ as their
own auxiliary observables. However relations such as (11), where the inequalities are in terms of
the usual diameters, can be obtained through other concentration inequalities. For example, if we
instead appeal to the Lipschitz concentration Theorem 2.7, it is easy to obtain inequalities (11)
from Lemma 4.1 with DF replaced by 2|F |DX . However, it is easy to show that

DF ≤ |F |DX

indicating that McDiarmid’s Theorem 2.1 provides a superior concentration guarantee. On the
other hand, since DX is a sum of diameters, and the supremum

|F | := sup
x �=x′

F (x) − F (x′)
d(x, x′)

can be estimated by the empirical Lipschitz coefficient

ˆ|F | := sup
Xi �=Xi′ ,i,i′=1,..,n

F (Xi) − F (Xi′)
d(Xi, Xi′)

,

it follows that |F | and DX can be estimated from sample data using Corollary 4.9 in Section 4.2.
However, this will require the random variable X to be observable. Consequently, when DF has no
readily apparent auxiliary observables (such as when no knowledge of the coefficient of separability
cF is available), and X is observable, using the Lipschitz concentration Theorem 2.7 may prove
fruitful.

4.2 Concentration of Empirical Quantiles

Since we will be concerned with the effects of estimating essential diameters using sample data,
we now describe results, of independent interest, concerning the concentration of empirical quan-
tiles about distributional quantiles and show how to use them to bound empirical diameters
with respect to essential diameters. Let X be a real random variable with probability measure
P and recall its distribution function F(ξ) := P(X ≤ ξ). For 0 < p < 1 define the quantiles
ξp := F

−1(p) := inf {ξ : F(ξ) ≥ p}. We will use important properties of F and F
−1 listed in The-

orem 7.1 in the Appendix. Moreover, let Xi, i = 1, n be i.i.d samples from X. Let Pn denote
the corresponding empirical measure, denote by Fn its corresponding distribution function, and let
ξ̂p := inf {ξ : Fn(ξ) ≥ p} denote the empirical quantiles. We will use the following improvement of
a theorem of Serfling [31, Thm. 2.3.2].

Theorem 4.5 Let 0 < q < 1 and suppose that ξ > ξq. Then with δ1 := F(ξ) − q we have

i) P
n(ξ̂q > ξ) ≤ e−2nδ2

1

ii) P
n(ξ̂q > ξ) ≤ e

− nδ21
2(1−F(ξ))+ 2

3 δ1
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iii) P
n(ξ̂q > ξ) ≤ e

− nδ21
2F(ξ)

On the other hand suppose that ξ < ξq. Then with δ2 := q − F(ξ) we have

i) P
n(ξ̂q < ξ) ≤ e−2nδ2

2

ii) P
n(ξ̂q < ξ) ≤ e

− nδ22
2F(ξ)+ 2

3 δ2

iii) P
n(ξ̂q < ξ) ≤ e

− nδ22
2(1−F(ξ))

Theorem 4.5 now gives us a good tool to compare empirical diameters with quantiles.

Theorem 4.6 Let X be a real random variable and let Xi, i = 1, .., n i.i.d. samples. For 0 < p < 1,
we have

i) Let Dn := supi=1,..,n Xi − infi=1,..,n Xi denote the empirical range. Then we have

P
n
(
Dn < ξp − ξ1−p

)
≤ 2e−

1
2
n(1−p) .

ii) Suppose X is a non-negative random variable and let Sn := supi=1,..,n Xi denote the empirical
supremum. Then we have

P
n
(
Sn < ξp

)
≤ e−

1
2
n(1−p) .

We now show how to use Theorem 4.6 to bound the the empirical diameters in terms of essential
diameters. To that end, let X− := ess inf X and X+ := ess supX. Then the essential diameter is
D := X+ − X−. We introduce a tail function quantifying the behavior of a random variable near
its range limit.

Definition 4.7 Let the tail function τX corresponding to X be defined by

τX(ε) := sup t ε > 0 (13)
t : ξ1−t − ξt ≥ D

1+ε , (14)

Roughly speaking the function τX(ε) is such that the set obtained by eliminating the right and
left tails of mass τ is at least 1

1+ε as large as the diameter. Characterization of tail behaviors lies
as the heart of the theory of the limiting behavior of extreme order statistics (see e.g. Arov and
Bobrov[32], Pickands [33], Barndorff-Neilsen [34]) and will no doubt be useful when the diameters
are unbounded, but since we concern ourselves with the bounded case here, the tail function (13)
appear sufficient to our needs. The following proposition provides a lower bound for τ(ε) in terms
of the distribution function for X.

Proposition 4.8 Let X be a real random variable and suppose that X− := ess inf X and X+ :=
ess supX are finite. Then in terms of the essential diameter D := X+ − X−, we have

τX(ε) ≥ min
(
F(X− +

ε

2(1 + ε)
D), 1 − F(X+ − ε

2(1 + ε)
D)

)
, ε > 0.
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As an elementary application, consider the case where the tails are not too thin. That is suppose
for some κ > 0 we have F(X+ − x) < 1− (

x
D

)κ
, 0 < x < D and F(X− + x) ≥ (

x
D

)κ
, 0 < x < D. We

conclude from Proposition 4.8 that

τX(ε) ≥
( ε

2(1 + ε)

)κ ≥
( ε

4

)κ

which for ε small is tX(ε) �
(

ε
2

)κ
. For non-negative random variables we proceed similarly to

definition (13) and define

τX
+ (ε) := sup δ (15)

ξ1−δ ≥ X+

1+ε (16)

Similar arguments used in the proof of Proposition 4.8 imply that τX
+ (ε) ≥ 1−F( X+

1+ε). We are now
in a position to compare the empirical diameter with the essential diameter using the tail function
τ .

Corollary 4.9 Let X be a real random variable and let Xi, i = 1, .., n be i.i.d. samples from X.
Then

i) Let Dn := supi=1,..,n Xi − infi=1,..,n Xi denote the empirical range and let τ be define by (13).
Then for all ε > 0 we have

P
n
(
Dn <

D

1 + ε

)
≤ 2e−

nτ(ε)
2 .

ii) Suppose X is a non-negative random variable and let Sn := supi=1,..,n Xi denote the empirical
supremum and let τ+ be define by (15). Then for all ε > 0 we have

P
n
(
Sn <

X+

1 + ε

)
≤ e−

nτ+(ε)

2 .

4.3 Estimation in Hypothesis Tests

Lemma 4.2 and the discussion thereafter shows that when fH(D)+fK(D) ≤ 0 (thus determining a
relationship between the performance thresholds a, a′ and the diameter D) the test of Lemma 4.2
of H against K has type I error not greater than δ1 and type II error not greater than δ2. However,
when good upper bounds on D are not known and thus it is not known if fH(D)+fK(D) ≤ 0, these
results may be of limited value. To resolve this situation we use sample data to estimate D and
use the estimate to test the condition fH(D) + fK(D) ≤ 0. To develop validation and certification
tests along the lines above will involve sequential tests. The type of test we consider we call a stop
option hypothesis test:

Definition 4.10 For i = 1, 2 consider a null hypothesis Hi and alternative Ki of sets of real random
variables, and a test Ti of Hi against Ki. Define the reduced hypothesis spaces

H2ε := (K1 ∪H1) ∩H2,

K2ε := (K1 ∪H1) ∩ K2.

We define the stop option test T1 � T2 which first implements T1 and if the outcome is acceptance,
to use T2 to test H2ε against K2ε:

T1 � T2 :=

⎧⎪⎨
⎪⎩

0 T1 = 0
(1, 0) T1 = 1, T2 = 0
(1, 1) T1 = 1, T2 = 1
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All types of errors for the test T1 � T2 can be controlled by the following three types of errors:

θ1(T1 � T2) := P
(
T1 = 0

∣∣H1

)
θ11(T1 � T2) := P

({T1 = 1, T2 = 0}∣∣K1 ∪ (H1 ∩H2)
)

θ12(T1 � T2) := P
({T1 = 1, T2 = 1}∣∣K1 ∪ (H1 ∩ K2)

)
Since

K1 ∪ (H1 ∩H2) = (K1 ∪H1) ∩H2 = H2ε ,

K1 ∪ (H1 ∩ K2) = (K1 ∪H1) ∩ K2 = K2ε ,

it follows that
θ11(T1 � T2) = P

({T1 = 1, T2 = 0}∣∣H2ε)
)
,

θ12(T1 � T2) = P
({T1 = 1, T2 = 1}∣∣K2ε)

)
.

Consequently, the stop option test T1 � T2 converts tests of Hi against Ki, i = 1, 2 into a test of
H1 against K1 and if accepted then tests H2ε against K2ε. Since

P
(
T1 = 1

∣∣K1

)
= P

({T1 = 1, T2 = 0}∣∣K1

)
+ P

({T1 = 1, T2 = 1}∣∣K1

)
≤ P

({T1 = 1, T2 = 0}∣∣K1 ∪ (H1 ∩H2)
)

+ P
({T1 = 1, T2 = 1}∣∣K1 ∪ (H1 ∩ K2)

)
= θ11 + θ12,

it follows that if all the errors θ1, θ11, θ12, are small, then given K1 with high probability we reject
H1 and stop, and given H1 with high probability we accept H1 and test well on the second test
T2 when applied to the reduced null hypothesis H2ε against the reduced alternative K2ε. Finally,
we note that we can also define the errors to be conditional errors as in the conditional hypothesis
testing framework analyzed in [35]. In the applications of this paper, one can show that given H1

the conditional errors are roughly the same as above, and given K1, the conditional errors are not
good. However, in this case with high probability the first test will reject and stop.

We now proceed to implement the stop option test in the validation and certification setting. To
simplify the analysis in the following theorem, instead of first testing H1 = {fH(D) + fK(D) ≤ 0}
against K1 = {fH(D) + fK(D) > 0}, (where D is the essential diameter vector) we test H1 =
{fH((1 + ε)D) + fK((1 + ε)D) ≤ 0} against K1 = {fH(D) + fK(D) > 0}. Also observe that this
result is stated in terms of auxiliary variables which are sampled concomitantly with the sampling
of the primary variable F . More general situations can be easily addressed.

Theorem 4.11 Let H2 and K2 denote null and alternate hypothesis spaces of real random vari-
ables. Let X be a random variable with range X and probability law P, and let F : X → R and
F ′ : X n → R. Consider non-observable i.i.d. samples Xi, i = 1, .., n and observable F ′(X1, .., Xn).
In addition, let k be a positive integer and let F j : X → R, j = 1, .., k be a collection of auxiliary ob-
servables with essential diameters DF j , j = 1, .., k. Let D := 〈DF j 〉j=1,..,k denote the corresponding
vector of essential diameters,

D̂F j := sup
i=1,..,n

F j(Xi) − inf
i=1,..,n

F j(Xi)

denote the empirical diameters, and D̂ := 〈D̂F j 〉j=1,..,k the vector of empirical diameters. Let
fH : R

k → R and fK : R
k → R be non-decreasing functions such that

P
n(F ′ ≤ −fH(D)|H2) ≤ δ1,

P
n(F ′ ≥ fK(D)|K2) ≤ δ2.
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Let ε > 0 and define

H1 = {fH((1 + ε)D) + fK((1 + ε)D) ≤ 0},
K1 = {fH(D) + fK(D) > 0}.

and define the test T1 of H1 against the alternative K1 by

T1 :=

{
1 , fH((1 + ε)D̂) + fK((1 + ε)D̂) ≤ 0
0 , fH((1 + ε)D̂) + fK((1 + ε)D̂) > 0 .

(17)

Moreover, define the test T2 of H2 against K2 by

T2 :=

{
1 , F ′(X1, .., Xn) > −fH((1 + ε)D̂)
0 , F ′(X1, .., Xn) ≤ −fH((1 + ε)D̂) .

(18)

Finally, consider the stop option test T1 � T2 and it associated errors θ1, θ11, and θ12, defined in
Definition 4.10. Then if we define

Δ :=
k∑

j=1

P
n
(
(1 + ε)D̂F j < DF j

)
,

we have

θ1 = 0
θ12 ≤ δ1 + Δ
θ12 ≤ δ2 + Δ .

Moreover, for j = 1, .., k, let τ j denote the tail functions of F j defined in (13), and let

nε
j(δ) :=

2 log 2k
δ

τ j(ε)
. (19)

Then if n ≥ max
(
nε

j(δ1), nε
j(δ2)

)
, j = 1, .., k we have

θ1 = 0
θ11 ≤ 2δ1

θ12 ≤ 2δ2 .

The constraint n ≥ nε(δ) is logarithmic in δ−1 with multiplier 2
τ(ε) . If τ(ε) is not too small then

this is a weak constraint. For fixed sample sizes, this relation can be used to determine a lower
bound on the size of ε which can be used.

5 Validation and Certification with Estimated Diameters

We now present tests for validation and certification using estimated diameters. They show that
if the coefficients of separability c are approximately known then the validation and certification
Corollaries 2.3 and 2.4, using the estimated diameters, are still good.
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Corollary 5.1 (Validation with Estimated Diameters) Let a′ ≤ a, 0 < p < 1 and let

H2 = {P(F ≥ a) ≥ p}

K2 = {P(F ≥ a′) < p}.
With the assumptions of Theorem 4.11, let

F ′(X1, .., Xn) := 〈F 〉n
be the sample mean. Let c ≥ cF be a known constant and consider F : X → R with essential
diameter D as the only auxiliary observable. Let τ be the tail function of F defined in (13). Let
ε > 0 and let nε(δ) be defined in (19) with k = 1. Let 0 < δ1, δ2 < 1 and define

fH(r) :=
cr√
2

√
log p−1 +

cr√
2n

√
log δ−1

1 − a

fK(r) :=
cr√
2

√
log(1 − p)−1 +

cr√
2n

√
log δ−1

2 + a′

and let
D̂ := sup

i=1,..,n
F (Xi) − inf

i=1,..,n
F (Xi)

denote the empirical diameter. Moreover, consider the stop option test T1 � T2 and its associated
errors θ1, θ11, and θ12, as in Theorem 4.11. Then for n ≥ max (nε(δ1), nε(δ2)) we have

θ1 = 0
θ11 ≤ 2δ1

θ12 ≤ 2δ2 .

For certification, we now address the case where F = F1 +F2, where F1 can represent the model
and F2 represent the difference between the physical system and the model.

Corollary 5.2 (Certification with Estimated Diameters) Let a′ ≤ a, 0 < p < 1 and let

H2 = {P(F ≥ a) ≥ p}

K2 = {P(F ≥ a′) < p}.
With the assumptions of Theorem 4.11, let F = F1 + F2. Let n = n1 + n2 and in terms of the
observation F1(Xi), i = 1, .., n1 and F2(Xi), i = n1 + 1, n1 + n2 define

F ′(X1, .., Xn) := 〈F1〉n1 + 〈F2〉n2 .

Let c1 ≥ cF1 and c2 ≥ cF2 be known constants and consider F1 with essential diameter D1 and
F2 with essential diameter D2 as auxiliary observables, with diameter vector D := (D1, D2). Let
τ j , j = 1, 2 be the tail functions, defined in (13), of F1 and F2 respectively. Let ε > 0 and let
nε

j(δ), j = 1, 2 be defined in (19) with k = 2. Let δ1, δ2 < 1 and define

fH(s1, s2) := (c1s1 + c2s2)
√

log p−1 +

√(c2
1s

2
1

2n1
+

c2
2s

2
2

2n2

)
log δ−1

1 − a
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fK(s1, s2) := (c1s1 + c2s2)
√

log(1 − p)−1 +

√(c2
1s

2
1

2n1
+

c2
2s

2
2

2n2

)
log δ−1

2 + a′

and let
D̂1 := sup

i=1,..,n1

F1(Xi) − inf
i=1,..,n1

F2(Xi)

D̂2 := sup
i=n1+1,..,n1+n2

F2(Xi) − inf
i=n1+1,..,n1+n2

F2(Xi)

denote the empirical diameters with empirical diameter vector D̂ := (D̂1, D̂2). Moreover, consider
the stop option test T1 � T2 and its associated errors θ1, θ11, and θ12, as in Theorem 4.11. Then
for nj ≥ max (nε

j(δ1), nε
j(δ2)), j = 1, 2 we have

θ1 = 0
θ11 ≤ 2δ1

θ12 ≤ 2δ2 .

6 Proofs

Proof of Theorem 2.2: To begin we first prove the following simple lemma that quantifies how
the mass constraints of the null HD

a or the alternative KD
a imply a constraint on the value of EU .

Lemma 6.1Let 0 < p < 1, a ∈ R and D > 0. For 0 < t < 1 let rt := D√
2

√
log t−1. Suppose

U ∈ HD
a , then EU ≥ a − rp. Suppose U ∈ KD

a , then EU ≤ a + r1−p.

Proof: Let U ∈ HD
a and suppose to the contrary that EU < a − rp. Then we have

p ≤ P(U ≥ a) ≤ P(U > EU + rp) = P(U − EU > rp) < p

which is a contradiction, thus establishing the first assertion. Now let U ∈ KD
a and suppose to the

contrary that EU > a + r1−p. Then

p > P(U ≥ a) ≥ P(U > EU − r1−p) = P(U − EU > −r1−p) = 1 − P(U − EU ≤ −r1−p) ≥ p

which is a contradiction, thus establishing the second assertion.

The confidence version of the following result essentially completes the proof of Theorem 2.2.

Lemma 6.2With the assumptions of Theorem 2.2 let a, a′ ∈ R satisfy a − a′ ≥ rp + r1−p so that
the interval [a′ + r1−p, a− rp] is nonempty. Let b ∈ [a′ + r1−p, a− rp] and consider the test T of HD

a

against KD
a′ defined by

T :=

{
1, F ′(y) ≥ b

0, F ′(y) < b .

Then we have

θ1(U) < e−
2((a−rp)−b)2

D′2 ,

θ2(U) ≤ e−
2(b−(a′+r1−p))2

D′2 .
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Proof: Suppose U ∈ HD
a . Then by Lemma 6.1 we have

b ≤ b − (a − rp) + EU = b − (a − rp) + EF ′

so that by Theorem 2.1 applied to F ′, we conclude that the Type I error satisfies

θ1(U) = P(F ′(Y ) < b) ≤ P(F ′ − EF ′ < b − (a − rp)) < e
− 2((a−rp)−b)2

D2
F ′ ≤ e−

2((a−rp)−b)2

D′2 .

Similarly, if we suppose U ∈ KD
a′ , by Lemma 6.1 we have

b ≥ b − (a′ + r1−p) + EU = b − (a′ + r1−p) + EF ′.

Consequently, the Type II error satisfies

θ2(U) = P(F ′(Y ) ≥ b) ≤ P(F ′ − EF ′ ≥ b − (a′ + r1−p)) ≤ e
− 2(b−(a′+r1−p))2

D2
F ′ ≤ e−

2(b−(a′+r1−p))2

D′2 .

We are now ready to complete the proof of Theorem 2.2. It is easy to show that a, a′ and b satisfy
the assumptions of Lemma 6.2. Since it follows from the assumptions that (a − rp) − b ≥ r′δ and
b − (a′ + r1−p) ≥ r′δ′ the assertion follows from Lemma 6.2.

Proof of Corollary 2.3: It is not hard to see that EF ′ = EF = EU . Let the vector variable X
have J components and index the Jn components of

∏n
i=1 Xi by the map i, j �→ kij = J(i−1)+j, j =

1, .., J, i = 1, .., n. First observe that if we define F ′ :
∏n

i=1 Xi → R by F ′(
∏n

i=1 Xi) := 〈F 〉n we have
EF ′ = EF = EU . Moreover, for all j = 1, .., J, i = 1, .., n we have DF ′

kij
≤ 1

nDF
j , j = 1, .., J, i = 1, .., n

and therefore

D2
F ′ =

∑
j=1,..,J,i=1,..,n

(DF ′
kij

)2 ≤ 1
n2

∑
j=1,..,J,i=1,..,n

(DF
j )2 =

1
n

∑
j=1,..,J

(DF
j )2 =

1
n
D2

F

and so we conclude that DF ′ ≤ DF√
n
≤ D√

n
. The assertion follows from Theorem 2.2.

Proof of Corollary 2.4: As in the proof of Corollary 2.3 index the Jn1+n2 components of∏n1+n2
i=1 Xi by the map i, j �→ kij = J(i − 1) + j, j = 1, .., J, i = 1, .., n1 + n2. Since DF

j ≤
DF1

j + DF2
j , j = 1, .., J it easily follows the triangle inequality in �2 and the assumptions that

DF ≤ DF1 + DF2 ≤ D1 + D2 ≤ D. Consequently, U ∈ UD and we can apply Theorem 2.2. To
that end observe that F ′ :

∏n1+n2
i=1 Xi → R defined by F ′(

∏n1+n2
i=1 Xi) := 〈F1〉n1 + 〈F2〉n2 satisfies

EF ′ = EF1 + EF2 = EF = EU . Moreover, it follows that DF ′
kij

≤ 1
n1

DF1
j if 1 ≤ i ≤ n1 and

DF ′
kij

≤ 1
n2

DF2
j if n1 + 1 ≤ i ≤ n1 + n2. Consequently we conclude that

D2
F ′ =

∑
j=1,..,J,1≤i≤n1

(DF ′
kij

)2 +
∑

j=1,..,J,n1+1≤i≤n1+n2

(DF ′
kij

)2

≤ 1
n2

1

∑
j=1,..,J,1≤i≤n1

(DF1
j )2 +

1
n2

2

∑
j=1,..,J,n1+1≤i≤n1+n2

(DF2
j )2.

Therefore, since ∑
j=1,..,J,1≤i≤n1

(DF1
j )2 = n1D2

F1
≤ n1D2

1
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and ∑
j=1,..,J,n1+1≤i≤n1+n2

(DF2
j )2 = n2D2

F2
≤ n2D2

2

we conclude that

DF ′ ≤
√

D2
1

n1
+

D2
2

n2
.

Consequently Theorem 2.2 implies the first assertion. For the second observe that D1 ≤ D2 implies
that DF ≤ D1 + D2 ≤ 2D1 which implies U ∈ UD. Moreover, setting n2 ≥ D2

D1
n1 implies that

DF ′ ≤
√

D2
1

n1
+ D2

2
n2

≤ D1

√
2
n1

. Theorem 2.2 then implies the assertion.

Proof of Lemma 3.1: The assumption d(F, F̂ ) ≤ δp implies that if P(F̂ ≥ a) ≥ p that P(F ≥
a) ≥ p − δp and if P(F̂ ≥ a′) < p that P(F ≥ a′) < p + δp. The result then follows from Corollary
2.3.

Proof of Lemma 4.2: The first assertion is trivial and since gH(�F ) + gK(�F ) ≤ 0 the second
follows from

θ2 = P(F ′ > −gH(�F )|K) ≤ P(F ′ ≥ gK(�F )|K) ≤ δ2.

Proof of Lemma 4.4: The first assertion follows from the fact that both F �→ DF and F �→ DF

are diagonal bijective invariants. The second assertion follows from the fact that both F �→ DF

and F �→ DF are invariant under F �→ F + b, b ∈ R and both transform through scaling F �→ aF
by DaF = |a|DF For the second, let x, x′ approximately achieve the supremum in DF to accuracy
ε. That is F (x) − F (x′) ≥ DF − ε. Then using the product nature of X we find that

F (x) − F (x′) = F (x1, .., xm) − F (x′
1, .., x

′
m)

= F (x1, x2, .., xm) − F (x′
1, x2, .., xm) + F (x′

1, x2, .., xm) − F (x′
1, x

′
2, .., xm) + ......

≤
m∑

i=1

DF
j

and so conclude that DF ≤ ∑m
j=1 DF

j + ε. Since ε is arbitrary we then conclude that

DF ≤
m∑

j=1

DF
j ≤ √

m

√√√√ m∑
j=1

(
DF

j

)2 =
√

mDF

from which we conclude that
cF =

DF

DF
≥ 1√

m
.

On the other hand, since DF ≥ DF
j , j = 1, ..,m we obtain

D2
F ≥ 1

m

m∑
j=1

(
DF

j

)2 =
1
m
D2

F

and conclude that cF = DF
DF

≤ √
m.
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Proof of Theorem 4.5: Consider the first set of assertions. According to the proof of [31,
Thm. 2.3.2] we have

P
n(ξ̂q > ξ) = P

n
( n∑

i=1

Vi −
n∑

i=1

EVi > nδ1

)

where δ1 := F(ξ) − q and Vi := I(Xi > ξ). Consequently we obtain EVi = 1 − F(ξ), i = 1, .., n.
Applying Hoeffding’s inequality [26, Eqn. 2.4] establishes the first assertion. The second assertion
follows from [26, Thm. 2.3b] which he attributes to [36] in the binomial case. The last assertion
follows from [26, Thm. 2.3c] by the change of variables V ′

i := 1 − Vi, which he also attributes to
[36] in the binomial case.

For the second set of assertions, observe that according to the proof of [31, Thm. 2.3.2] we have

P
n(ξ̂q < ξ) ≤ P

n
( n∑

i=1

Wi −
n∑

i=1

EWi > nδ2

)

where δ2 := q − F(ξ) and Wi := I(Xi ≤ ξ). Consequently we obtain EWi = F(ξ), i = 1, .., n. The
assertions then follow in the same way as in the first set but with the role of F switched with 1−F.

Proof of Theorem 4.6: Since the first assertion is is clearly true when ξp − ξ1−p ≤ 0 we can
assume ξp − ξ1−p > 0 and 1

2 < p < 1. First observe that for c, α ∈ R we have

P
n
(
ξ̂p′ − ξ̂1−p′ < c(ξp − ξ1−p)

)
≤ P

n
(
ξ̂p′ < cξp + α

)
+ P

n
(
ξ̂1−p′ > cξ1−p + α

)
. (20)

We will address each term on the right-hand side separately using Theorem 4.5. For ε > 0 let
p′ > 1− 1

n so that we have the identities ξ̂p′ = supi=1,..,n Xi and ξ̂1−p′ = supi=1,..,n Xi. Since p′ > p
it follows that ξp ≤ ξp′ and consequently ξp − ε < ξp′ . Moreover, a similar argument shows that
ξ1−p + ε > ξ1−p′ . Consequently, if we define

cε := 1 − 2ε

ξp − ξ1−p

and
αε :=

ξp(ξ1−p + ε) − ξ1−p(ξp − ε)
ξp − ξ1−p

it follows that cε < 1 and
cεξp + αε = ξp − ε < ξp′

cεξ1−p + αε = ξ1−p + ε > ξ1−p′ .

Consequently we can apply Part 2iii of Theorem 4.5 to the first term on the right-hand side of (20)
to obtain

P
n
(

sup
i=1,..,n

Xi < cεξp + αε

)
= P

n
(

sup
i=1,..,n

Xi < ξp − ε
)

= P
n
(
ξ̂p′ < ξp − ε

)
≤ e

− nδ22
2(1−F(ξp−ε))

where δ2 := p′ − F(ξp − ε). Letting p′ �→ 1 we obtain

P
n
(

sup
i=1,..,n

Xi < cεξp + αε

)
≤ e−

1
2
n
(
1−F(ξp−ε)

)
.
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Since F(ξp − ε) ≤ F(ξp−) ≤ p we then conclude that

P
n
(

sup
i=1,..,n

Xi < cεξp + αε

)
≤ e−

1
2
n(1−p). (21)

For the second term on the right of (20) we apply Part 1iii of Theorem 4.5 to obtain

P
n
(

inf
i=1,..,n

Xi > cεξ1−p + αε

)
= P

n
(

inf
i=1,..,n

Xi > ξ1−p + ε
)

= P
n
(
ξ̂1−p′ > ξ1−p + ε

)
≤ e

− nδ21
2F(ξ1−p+ε)

where δ1 := F(ξ1−p + ε)− 1+ p′. Letting p′ �→ 1 and using F (ξ1−p + ε) ≥ F (ξ1−p) ≥ 1− p we obtain

P
n
(

inf
i=1,..,n

Xi < cεξp + αε

)
≤ e−

1
2
n(1−p). (22)

We combine the inequalities (21) and (22) with (20) to obtain

P
n
(
Dn < cε(ξp − ξ1−p)

)
≤ 2e−

1
2
n(1−p).

Since cε ↑ 1 as ε ↓ 0 the first assertion of the theorem follows (see e.g. [37, Thm. 1.2.7]).

For the second assertion, observe that it is clearly true when ξp = 0 so we can assume ξp > 0. Now
observe that the proof of Equation (21) actually proved that

P
n
(

sup
i=1,..,n

Xi < ξp − ε
)
≤ e−

1
2
n(1−p).

Since (ξp − ε) ↑ ξp as ε ↓ 0 the second assertion follows.

Proof of Proposition 4.8: Let δ+ := 1−F(X1− ε
2(1+ε)D) and δ− := F(X−+ ε

2(1+ε)D) and define
δ∗ = min (δ−, δ+) − δ′ with δ′ > 0. Then since Lemma 7.1asserts that F

−1(t) ≤ x if and only if
t ≤ F(x) it follows that F

−1(F(X+ − ε
2(1+ε)D) + δ′) > X+ − ε

2(1+ε)D and therefore

ξ1−δ∗ ≥ ξ1−δ++δ′ = F
−1(1 − δ+ + δ′) = F

−1(F(X+ − ε

2(1 + ε)
D) + δ′) ≥ X+ − ε

2(1 + ε)
D.

Moreover, since

ξδ∗ ≤ ξ(δ−) = F
−1(δ−) = F

−1(F(X− +
ε

2(1 + ε)
D)) ≤ X− +

ε

2(1 + ε)
D

we conclude that
ξ1−δ∗ − ξδ∗ ≥ (

1 − 2ε

2(1 + ε)
)
D =

D

1 + ε
.

The assertion then follows by letting δ′ �→ 0.

Proof of Corollary 4.9: We will only prove the first assertion since the proof of the second is
essentially the same. Since the assertion is trivially true when D = 0 we can assume this not the
case. Then since for 0 < p ≤ δ(ε) we have

ξ1−p − ξp =
ξ1−p − ξp

D
D ≥ D

1 + ε

the assertion follows from from Theorem 4.6.
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Proof of Theorem 4.11: Since D̂ ≤ D with probability 1 we find that

θ1 = P
n
(
T1 = 0

∣∣H1

)
= P

n
(
fH((1 + ε)D̂) + fK((1 + ε)D̂) > 0

∣∣fH((1 + ε)D) + fK((1 + ε)D) ≤ 0
)

≤ P
n
(
fH((1 + ε)D) + fK((1 + ε)D) > 0

∣∣fH((1 + ε)D) + fK((1 + ε)D) ≤ 0
)

= 0

establishing the first assertion. For the second and third assertions we use following lemma.

Lemma 6.3With the assumptions of Theorem 4.11 let F ′ : X n → R and let f : R
k → R be

non-decreasing. Then we have

P
n
(
F ′ ≥ f

(
(1 + ε)D̂

)) ≤ P
n
(
F ′ ≥ f(D)

)
+

k∑
j=1

P
nj

(
(1 + ε)D̂F j < DF j

)
. (23)

Moreover, for nj ≥ nε
j(δ), j = 1, .., k we have

k∑
j=1

P
n
(
(1 + ε)D̂F j < DF j

)
≤ δ

and therefore
P

n
(
F ′ ≥ f

(
(1 + ε)D̂

)) ≤ P
n
(
F ′ ≥ f

(
D

))
+ δ

Proof: By the monotonicity of f it follows that{
F − f

(
(1 + ε)D̂

) ≥ 0
}

(24)

⊂
{

F − f(D) ≥ 0
}
∪ ∪k

j=1

{
(1 + ε)D̂F j < DF j

}
. (25)

Consequently, we obtain the first assertion:

P
n
(
F ′ ≥ f

(
(1 + ε)D̂

)) ≤ P
n
(
F ′ ≥ f(D)

)
+

k∑
j=1

P
n
(
(1 + ε)D̂F j < DF j

)

= P
n
(
F ′ ≥ f(D)

)
+

k∑
j=1

P
n
(
(1 + ε)D̂F j < DF j

)
.

For the second, observe that by Corollary 4.9 we find that for each j we have

P
n
(
(1 + ε)D̂F j < DF j

)
= P

n
(
(1 + ε)D̂F j < DF j

)
≤ 2e−

nτj(ε)
2 .

Since the assumption n ≥ nε
j(δ), defined in (19), implies that

2e−
nτj(ε)

2 ≤ δ

k
, j = 1, .., k

the second assertion follows from the first.
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We now proceed to the second and third assertions of Theorem 4.11. Observe that

θ11 = P
n
(
T1 = 1, T2 = 0

∣∣H2ε

)
≤ P

n
(
T2 = 0

∣∣H2

)
= P

n
(
F ′ ≤ −fH((1 + ε)D̂)

∣∣H2

)
Since Δ =

∑k
j=1 P

n
(
(1+ε)D̂F j < DF j

)
, Lemma 6.3 (Equation 23) applied to −F ′ then shows that

θ11 ≤ P
n
(
F ′ ≤ −fH((1 + ε)D̂)

∣∣H2

) ≤ P
n
(
F ′ ≤ −fH(D)

∣∣H2

)
+ Δ

thus establishing the second assertion. Since T1 = 1 implies that fH((1 + ε)D̂) + fK((1 + ε)D̂) ≤ 0
we find that

θ12 = P
n
(
T1 = 1, T2 = 1

∣∣K2ε

)
= P

n
(
T1 = 1, F ′ > −fH((1 + ε)D̂)

∣∣K2ε

)
≤ P

n
(
T1 = 1, F ′ > fK((1 + ε)D̂)

∣∣K2ε

)
≤ P

n
(
F ′ ≥ fK((1 + ε)D̂)

∣∣K2

)
As in the previous case, Lemma 6.3 then shows that

θ12 ≤ P
n
(
F ′ ≥ fK((1 + ε)D̂)

∣∣K2

) ≤ P
n
(
F ′ ≥ fK(D)

∣∣K2

)
+ Δ

thus establishing the third assertion.

The last set of assertions follows by observing that the assumption n ≥ max
(
nε

j(δ1), nε
j(δ2)

)
, j =

1, .., k and Lemma 6.3 implies that Δ ≤ min (δ1, δ2).

Proof of Corollary 5.1: Since EF ′ = EF , Lemma 4.1 implies that

P
n
(
F ′ ≤ −f ′

H(DF ,DF ′ , δ1)
∣∣H2

)
≤ δ1 ,

P
n
(
F ′ ≥ f ′

K(DF ,DF ′ , δ2)
∣∣K2

)
≤ δ2 ,

where
f ′

H(r1, r2, δ) :=
r1√
2

√
log δ−1 +

r2√
2

√
log p−1 − a ,

f ′
K(r1, r2, δ) :=

r1√
2

√
log δ−1 +

r2√
2

√
log (1 − p)−1 + a′ .

By Definition 4.3 we have DF ≤ cD. Moreover, the proof of Corollary 2.3 shows that

DF ′ ≤ 1√
n
DF ≤ cD√

n
.

Consequently, we have f ′
H(DF ,DF ′ , δ1) ≤ fH(D) and f ′

K(DF ,DF ′ , δ2) ≤ fK(D) and therefore

P
n
(
F ′ ≤ −fH(D)

∣∣H2

)
≤ δ1 ,

P
n
(
F ′ ≥ fK(D)

∣∣K2

)
≤ δ2 ,

The assertion then follows from Theorem 4.11.
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Proof of Corollary 5.2: As in the proof of Corollary 5.1, since EF ′ = EF , Lemma 4.1 implies
that

P
n
(
F ′ ≤ −f ′

H(DF ,DF ′ , δ1)
∣∣H2

)
≤ δ1 ,

P
n
(
F ′ ≥ f ′

K(DF ,DF ′ , δ2)
∣∣K2

)
≤ δ2 ,

where
f ′

H(r1, r2, δ) :=
r1√
2

√
log p−1 +

r2√
2

√
log δ−1 − a ,

f ′
K(r1, r2, δ) :=

r1√
2

√
log (1 − p)−1 +

r2√
2

√
log δ−1 + a′ .

By Definition 4.3 we have DF1 ≤ c1D1 and DF2 ≤ c2D2. Therefore it follows that

DF = DF1+F2 ≤ DF1 + DF2 ≤ c1D1 + c2D2.

Moreover, the proof of Corollary 2.4 implies that

DF ′ ≤
√

D2
F1

n1
+

D2
F2

n2
≤

√
c2
1D

2
1

n1
+

c2
2D

2
2

n2
.

Consequently, we have f ′
H(DF ,DF ′ , δ1) ≤ fH(D) and f ′

K(DF ,DF ′ , δ2) ≤ fK(D) and therefore

P
n
(
F ′ ≤ −fH(D)

∣∣H2

)
≤ δ1 ,

P
n
(
F ′ ≥ fK(D)

∣∣K2

)
≤ δ2 ,

The assertion then follows from Theorem 4.11.

7 Appendix

The following Lemma from [31, Lem. 1.1.4 & Sec. 2.3] lists important properties of the distribution
function F(x) := P(X ≤ x) and its corresponding quantile function F

−1(t) := inf {x : F(x) ≥ t}.

Lemma 7.1 Let F be a distribution function. Then F is right continuous and the function F
−1, 0 <

t < 1 is non-decreasing, left continuous and satisfies

i) F
−1(F(x)) ≤ x,−∞ < x < ∞ .

ii) F(F−1(t)) ≥ t ≥ F(F−1(t)−), 0 < t < 1 .

iii) F(x) ≥ t if and only if x ≥ F
−1(t).

Example 7.2 (Extreme values of cF ) Let F (x) :=
∑m

j=1 Fj(xj). Then since F (x) − F (x′) =∑m
j=1

(
Fj(xj) − Fj(x′

j)
)

it follows that

DF =
m∑

j=1

D
Fj

j .
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Moreover, since DF
j = D

Fj

j , j = 1, ..,m we obtain

D2
F =

m∑
j=1

(
D

Fj

j

)2

and therefore

c2
F =

∑m
j=1

(
D

Fj

j

)2

(∑m
j=1 D

Fj

j

)2 .

In particular, when D
Fj

j = DF1
1 , j = 1, , m we obtain cF = 1√

m
. On the other hand, let X :=

[0, 1]m ⊂ R
m and let F (x) := ‖x‖, ‖x‖ ≤ 1 and F (x) := 0, ‖x‖ > 1 where ‖x‖ is the Euclidean

norm of x. Then it is easy to see that DF = 1, DF
j = 1, j = 1, ..,m and therefore D2

F = m.
Consequently in this case we obtain cF =

√
m.
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