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Abstract—User association logs collected from a large-scale
wireless LAN record where and when a user has used the
network. Such information plays an important role in wireless
network research. One concern of sharing these data with other
researchers, however, is that the logs pose potential privacy
risks for the network users. Today, the common practice in
sanitizing these data before releasing them to the public is to
anonymize users’ sensitive information, such as their devices’
MAC addresses and their exact association locations. In this
work, we aim to study whether such sanitization measures are
sufficient to protect user privacy. By simulating an adversary’s
role, we propose a novel type of correlation attack in which the
adversary uses the anonymized association log to build signatures
against each user, and when combined with auxiliary information,
such signatures can help to identify users within the anonymized
log. Using a user association log that contains more than four
thousand users and millions of association records, we demon-
strate that this attack technique, under certain circumstances, is
able to pinpoint the victim’s identity exactly with a probability as
high as 70%, or narrow it down to a set of 20 candidates with a
probability close to 100%. We further evaluate the effectiveness of
standard anonymization techniques, including generalization and
perturbation, in mitigating correlation attacks; our experimental
results reveal only limited success of these methods, suggesting
that more thorough treatment is needed when anonymizing
wireless user association logs before public release.

I. INTRODUCTION

In many large-scale wireless local area networks (WLANs),

user association logs keep a record of each association and

disassociation event between users’ wireless devices and the

network’s access points (APs). Such traces collected from

production networks, when made available for research, play a

critical role in understanding user activity patterns, analyzing

network protocol dynamics, and evaluating the performance,

reliability, and security of new network designs [42], [11],

[40]. We, at Dartmouth College, have monitored a campus-

wide WLAN for almost one decade and some of our collected

traces have been made public through our CRAWDAD web-

site [10]. These network traces have been extensively studied

by the wireless research community and have been used in

more than 100 research publications.

To preserve users’ privacy, a trace publisher must sanitize
the network traces before sharing them with the public.

Although many network sanitization techniques have been

proposed and developed, recent research has shown that these

techniques provide limited protection against user (or host) re-

identification attacks. Existing sanitization techniques usually

deal with explicit sensitive fields in the dataset, such as

IP/MAC addresses, port number, and TCP/UDP payloads, but

ignore implicit information that can be potentially extracted

and used to identify an anonymized user (or host). For

an enterprise-wide network with thousands of users, privacy

analysis on wired network traces has been widely studied

to understand the severity of some potential trace-sharing

risks [5], [33], [9]. However, similar research is scarce for

enterprise-wide, large-scale wireless networks [45], [22]. As

the edge of the Internet is increasingly becoming wireless, and

because wireless networks have some unique characteristics,

such as user mobility, it is important to evaluate privacy threats

posed due to shared wireless network traces.

In this paper, we conduct privacy analysis on one of the sim-

plest wireless network traces, a user association log, collected

from a large-scale WLAN. Compared to other semantically

rich wireless-network traces, we would hope the simplicity of

the user association log could make it more resistant to po-

tential privacy risks. We consider the following two questions:

1) Using only the “insensitive” information in an anonymized

user association log, is it possible to build a unique signature

for each user? These signatures, when combined with some

auxiliary information, such as a short-term un-anonymized

log, can be used to distinguish users and infer some sensitive

information from the anonymized log. 2) If privacy breach is

possible, how effective is a proposed mitigation approach in

preventing an adversary from building such signatures?

In a nutshell, we make three major contributions in this

work. First, we simulate the role of an adversary and propose a

“correlation attack” – a method based on Conditional Random

Field (CRF) – that can be used to breach user privacy from a

released WLAN user association log. Second, we use extensive

experiments to demonstrate the effectiveness of the CRF-

based correlation attack. Using an anonymized campus-wide

WLAN user association log with more than four thousand

users and millions of user association records, and a short-

term observation of the victim’s association activities, we

show that the CRF-based correlation attack, under certain

circumstances, can reveal the victim’s identity in the released

dataset with a probability as high as 70%, or narrow down the

victim’s identity among 20 candidates with a probability close

to 100%. Third, we evaluate the effectiveness of standard san-

itization techniques, including generalization and perturbation,

in mitigating the proposed correlation attack; the results reveal

only limited success of these methods, suggesting that more

thorough treatment is needed when anonymizing wireless user
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association logs before the public release.

The remainder of this paper is organized as follows. We

first present related work in Section II. In Section III, we

introduce how user association logs are collected in WLANs

and describe the common practice in sanitizing these data

before sharing them with the public. In Section IV, we discuss

the adversarial model and formulate the correlation attack

problem. We present in Section V how an adversary can use

a CRF-based technique to launch correlation attacks against

released user association datasets, and evaluate the attack

effectiveness of this method in Section VI. In Section VII,

we consider two widely used anonymization techniques, gen-

eralization and perturbation, and evaluate their effectiveness

in mitigating CRF-based correlation attacks. Finally, we draw

concluding remarks in Section VIII.

II. RELATED WORK

To share network traces while preserving privacy, data

publishers usually define sanitization policies according to

their specific privacy concerns. These policies determine which

sanitization methods to apply and how. Many network-trace

sanitization techniques and software tools have been proposed

and implemented, such as FLAIM [41] and tcpmkpub [36], to

fulfill the trace publishers’ sanitization goals.

Due to the intrinsic complexity of network trace sanitization,

however, recent research has revealed that there are few, if any,

available network-trace sanitization schemes that can provide

a water-tight guarantee under the worst-case analysis. These

works often mimic the role of an adversary that tries to launch

a de-sanitization attack against the sanitized trace. Accord-

ing to the employed attack strategies, these de-sanitization

research can be classified into two categories. Direct attacks
exploit the limitations of a sanitization algorithm [5], [33], [9].

Indirect attacks use implicit information contained in the trace

[9], [14], [1], [35], auxiliary information obtained from other

sources [23], [9], [35], or new techniques from other research

fields, such as machine learning [8], [4], [35], [1], to uncover

sensitive information from anonymized network traces.

In the domain of wireless networks, many physical-device-

fingerprinting techniques could potentially be used to launch

de-sanitization attacks [14], [1], [4]. Because most of these

techniques work by monitoring unique variations in protocol

behaviors, such as those seen across different vendors or

device-driver implementations, they often require very-high-

resolution data or even special measurement equipment. Such

requirements greatly limit their applicability for de-sanitization

on most types of released traces. Some other researchers have

focused on how to fingerprint users. For instance, Pang et al.

demonstrated that by combining information from multiple

sources together, such as destination address, broadcast packet

size and IEEE 802.11 MAC protocol fields, an adversary

could uniquely identify users under certain circumstances [35].

Their techniques, however, rely on much more abundant trace

semantics than our work and have only been evaluated with

much smaller wireless network traces than the one we used.

Previously, we speculated a potential threat against user mo-

bility privacy in a general sense [45]. Most close to this work,

Kumar and Helmy have recently shown that it is possible to

breach privacy from WLAN user association logs [22]. Their

attack model assumes that the adversary can inject data into

the wireless network during the trace collection or has some

out-of-band information such as the victim’s academic major

and gender. In practice, these conditions may be difficult to

satisfy. The type of attacks we discuss in this paper, however,

do not require these assumptions.

Location privacy has been investigated in diverse commu-

nication networks in the past few years. Krumm presented a

comprehensive survey of computational location privacy, in

which users’ location data are treated as geometric informa-

tion [20]. Hoh et al. analyzed a set of week-long GPS traces

from 233 vehicles and showed that applying previous privacy

algorithms either led to inaccurate results or failed to provide

privacy guarantees; they further proposed an uncertainty-aware

algorithm that is able to preserve privacy for all vehicles [17].

In comparison, the trace used in our work covered thousands

of users and more than two months. Location privacy in sensor

networks has also been studied under different adversarial

models [32], [28], [34]. Our work differs from this line of

research because it considers location privacy in a different

network environment, which leads to a different threat model.

For example, we do not assume that the adversary is capable

of monitoring the entire network traffic in our work.

Narayanan et al. proposed a method to robustly de-

anonymize a large dataset [29]. Their work is based on

the assumption that the studied dataset is highly sparse;

for example, in their studied Netflix dataset, the number of

attributes (movies) is twenty times more than the number of

potential targets (Netflix subscribers). In our study, we make

no assumptions about the sparsity of user association logs.

Privacy has been intensively studied for a long time in

the database field. Concepts such as k-anonymity [39], l-
diversity [26], t-closeness [25], and differential privacy [13]

have been analyzed in a theoretical manner under many set-

tings [15], [6], [2]. Most related techniques aim to anonymize

microdata, which is represented as a tuple with multiple at-

tributes in a database table. The user association log, however,

contains information with sequential semantics. An interesting

research direction would be to develop methods to cast existing

privacy-preservation concepts into a framework able to deal

with sequential data, as required in sanitizing user association

logs collected from WLANs, and we plan to explore further

along this line in our future work. Recently, some efforts on

analyzing privacy of graph data have shown that sensitive

information in social network data can be de-anonymized [49],

[3], [30]. Our work differs from this line of research because

we deal with sequential activity data corresponding to individ-

ual users instead of the social graphs formed by the users.

III. WLAN USER ASSOCIATION LOGS

At Dartmouth College, we have been monitoring the

campus-wide WLAN network usage since 2001. As of January
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2010, this WLAN network consists of over 1300 Aruba APs

that provide 54Mbps coverage to the entire campus. These

Aruba APs are connected with and controlled by a small

set of Aruba Mobility Controllers. We poll every controller

every 5 minutes using the SNMP protocol and receive replies.

In addition to traffic statistics, these replies contain a list

of devices associated with every AP. After processing these

replies, each row of the resulting user association log collected,

which we call a user association record, has 4 comma-

separated fields: the MAC address of the wireless card, the

name of the AP that the wireless card has connected with,

and the start and the end POSIX timestamp of this connection.

The following is a snippet of the user association log that

we extract from the SNMP information (it shows anonymized

MAC addresses to protect user privacy):

001d4f3bc496,14.5.1, 1251690285,1251691544
002608e4cdf7,80.3.2, 1251690458,1251691544
0021e9082bfd,142.6.1,1251689384,1251691544
0016cf29eb6d,76.5.3, 1251691151,1251691544
001cb3b51b58,188.4.6,1251689569,1251691544
0016cf295f33,206.5.7,1251688817,1251691544

There are a few things worth noting. First, although it is

possible that a wireless card may have been used in multiple

devices or a device has been used by multiple people, we

assume that such cases are rare in our dataset. Hence in

this paper we use a “wireless card” and a “network user”

(or a “user”) interchangeably. Second, because the Aruba

Mobility Controller only generates the start timestamp for

each connection and we poll the controller every 5 minutes,

the connection’s end timestamp is only an estimated value,

whose error is therefore bounded by 5 minutes. Third, we

use a hierarchical naming scheme for APs in the dataset. For

an AP named x.y.z, x is its building number, y is its floor

number, and z is its serial number within the floor.

Sanitization. When sanitizing the user association logs,

we use a one-to-one mapping function to rename the MAC

addresses in the original dataset. Hence, the anonymized MAC

addresses in the sanitized dataset do not have any physical

meaning and are thus only symbolic names; a similar saniti-

zation scheme has been used in other work [22]. By taking

advantage of its hierarchical naming scheme, we truncate an

AP’s name according to different sanitization levels. For ex-

ample, if we want to only keep building and floor information,

we truncate the AP’s name from x.y.z to x.y.

IV. THREAT MODEL AND PROBLEM FORMULATION

Complying with Narayanan’s definition of privacy

breach [29], the threat we study here is whether the limited

insensitive information left in a sanitized association log

could still form implicit signatures for individual users.

These implicit signatures, when combined with auxiliary

information, may provide the adversary the knowledge that

the sanitization process has aimed to protect, such as whether

an anonymized ID in the released dataset corresponds to a

specific user. We make the following three assumptions in

our threat model:

Assumption 1: The adversary has access to a sanitized

WLAN user association log Ls, which is shared to the public

by a trace publisher. There are Ns users in this association

log. All users’ real MAC addresses are anonymized in Ls as

follows: during the trace publisher’s sanitization process, each

real MAC address has been replaced with a new identifier

IDi (1 ≤ i ≤ Ns) according to some one-to-one one-way

mapping function. Hence, given an anonymized MAC address

IDi, the adversary cannot find the real MAC address that

is mapped to IDi. The AP’s name can be either preserved

or truncated. The rest of the fields, such as the start and

end timestamp of each connection, are preserved during the

sanitization process.

Assumption 2: The adversary knows a sequence of associ-

ation records about a victim user’s device. This sequence of

records, Q, need not be collected during the same time period

as Ls (otherwise the problem will be trivial). It is important to

note that the information provided in Q can be rather coarse.

For example, the adversary may only need to know which

buildings the victim has visited rather than which exact APs

the victim has associated with.

There are a few ways for the adversary to obtain such

information: (1) The adversary has some general knowledge

about the victim. For example, the adversary knows the victim

often stays in the library in the morning for 2 hours and then

goes to the classroom around 3pm in the afternoon. (2) The

adversary can manage to install some trojan software on the

victim’s device through some social engineering techniques

(e.g., email attachments) or exploiting software vulnerabili-

ties on the victim’s device. The trojan secretly monitors the

network association/disassociation activities of the device and

reports them to the adversary through covert channels. (3)

The adversary follows the victim physically and monitors

the victim’s network association/disassociation activities. For

instance, when the victim opens a laptop, usually the laptop

will automatically find the closest AP and connect to it,

which leads to an association record. (4) The adversary can

obtain the user association records of the victim user from

a different dataset L′, which may or may not be published

by the same publisher as Ls. L′ may be produced using a

weak anonymization scheme (or even no sanitization at all)

so that it is easier for the adversary to identify the victim’s

AP association records in it than in Ls.

Assumption 3: The adversary knows that the sanitized

dataset Ls must contain the victim’s AP association records. In

many cases, Ls is published at an organization level (e.g., by

a university) and thus contains complete AP association logs

of the organization’s wireless users. Hence, if the adversary

knows that the victim was a member of the organization when

Ls was collected, it is easy for him to know that Ls should

contain the victim’s AP association records.

Given the three assumptions in the adversarial model, the

(exact) correlation attack problem is then formulated as fol-

lows: given Ls and Q, which anonymized identity IDi (1 ≤



4

i ≤ Ns) in Ls has also generated Q? In practice, however, due

to incomplete data for training or inference, or some intra- and

inter-user association activity variations, finding an algorithm

to solve the exact correlation attack problem is difficult or

even impossible. In this work, we consider a relaxed and more

practical version of this problem. The (relaxed) correlation
attack problem is formulated as follows: given Ls and Q,
which subset of anonymized identities would contain the one
that generated Q with high probability?

It is important to emphasize the difference between the

correlation attack problem and the mobility anomaly detection

problem [43], [47]. The latter one is stated as follows: given

the mobility history of a mobile user H, is a test mobility

record R generated from the same user? Although both

problems are related to human mobility, the distinction in their

conditions (i.e., prior knowledge) suggests the difference: The

mobility anomaly detection problem is essentially a statistical
hypothesis test, whose solution does not require the knowledge

of other users’ mobility history. In contrast, the correlation

attack problem is about classification: considering that there

are Ns classes and we know each class’s association records,

we want to find the correct class for the observed association

sequence Q. Their difference can further be explained with an

example. It is possible that the observed association sequence

Q does not exhibit the user’s regular mobility pattern and can

thus be treated as an anomaly in the mobility anomaly detec-

tion problem. But as long as no other users have association

records closer to Q, we may still be able to find the correct

class for Q in the correlation attack problem.

V. ALGORITHM DESCRIPTION

The intuition behind the proposed algorithm is that human

activities often follow certain regularities. These regularities

are inherent in the temporal and spatial information of the

association log, whether or not the log is sanitized. Different

users may have different association patterns, and we can use

such differences to fingerprint and distinguish users. To this

end, we build a model that not only characterizes such inter-

user differences but also is robust to intra-user variations.

In the previous section, we formulate correlation attack as

a classification problem, in which the two key components

are feature representation and the learning algorithm. We use

association activity templates to represent user association logs

and employ CRF as the learning algorithm.

A. Data Representation

Previously, there are two general approaches to represent

user association activities: direct representation and abstract
representation. The method proposed by Song et al. [42],

for instance, is a typical direct representation that puts all

visited APs in an AP transition vector and the corresponding

duration at each AP in a duration vector. Suppose that a

user has traveled from AP1, AP2 to AP3 sequentially and

connected with each AP for 30, 45, 25 minutes respectively.

Then, the corresponding AP transition vector is [AP1, AP2,

AP3] and the duration vector is [30 min, 45 min, 25 min].

Day 1 Day 2 Day 3 Day N......

AP3 AP 5 AP 7 AP 5 AP 6

Feature 
1

Feature
2

Feature 
3

... 

Association
activity 

template

AP 1 T 1 T 2 AP 3 T 3 T 4 AP 6 T 8 T 9......
User 

association 
log

Day-to-day
log

......

Feature 
1

Feature
2

Feature 
3

... 

Feature 
1

Feature
2

Feature 
3

... 

Feature 
1

Feature
2

Feature 
3

... 

Feature 
1

Feature
2

Feature 
3

... 

......

......

Association
activity

tag

Association
activity
vector

Fig. 1. Represent an user’s association log using association activity template

While this method captures every AP association transition,

it ignores other potentially valuable information, such as

when the connection took place. On the other hand, the

abstract representation method, such as Hsu et al.’s normalized
association vector [18], aims to capture the overall trend of

AP association changes at the expense of losing many details

during the abstraction process.

As the previous data representation methods ignore details

that are important to classification, we propose a new ap-

proach that uses association activity templates to represent

user association logs. In this method, we first split the user’s

association log into day-to-day pieces and then for each

day build an individual association activity template, because

human activities often exhibit regularities associated with days

of the week. An association activity template is a collection

of association activity tags and their corresponding association

activity vectors. As shown in Figure 1, the association activity

tag is the name of the visited AP. Each element in an

association activity vector is called a feature. In the current

implementation, we let an activity vector have six features:

duration, day of week, starting time, previous AP, next to
previous AP, and next AP. Table I explains these features.

Several things are worth noting here. First, an association

activity vector does not correspond one-to-one with an AP

association record (i.e., a row in the user association log).

This is because an association activity vector resides in

an association activity template that only holds association

information for a specific 24-hour calendar day. Thus, if

an AP association record spans multiple days, it is divided

into several association activity templates and represented by

multiple association activity vectors inside these templates.

The duration feature in an association activity vector follows

this manner. If a connection is entirely contained in a 24-

hour calendar day, the value of duration is the end timestamp

less the start timestamp. If a connection spans several days,

the value of duration is equal to this connection’s cumulative

amount of time in the corresponding 24-hour calendar day.

Given the duration feature’s maximum value is 24 hours, it
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TABLE I
FEATURES OF AN ASSOCIATION ACTIVITY VECTOR

Feature
name

Meaning Value Comments

duration Adjusted connec-
tion duration

Integer Normalized,
inspired by Hsu’s
work [18]

day of
week

Day of the week
of this record

Enum. type, from
Monday to Sunday

To represent
periodic patterns,
inspired by Kim’s
work [19]

starting
time

Time slot of a
day of this record

Enum. type, from
Midnight to Night

previous
AP

The AP in the
previous record

String, AP’s name

To represent
context
information,
inspired by Song’s
work [42] and
YamCha [21]

next-to-
previous
AP

The AP in the
next-to-previous
record

next AP The AP in the
next record

is intrinsically normalized on a 24-hour base. Second, instead

of assigning an exact time (hour, minute and second) to the

starting time feature, we divide a day into six 4-hour slots

(midnight, dawn, morning, afternoon, evening, and night) and

use the name of these slots as the coarse start time. As shown

in Kim’s work [19], although user association behaviors have

periodic patterns, they also have some variations. Compared

to the exact representation, representing the time at a coarse

level adds some tolerance for these variations. Third, at the

beginning of each day, we assign a special string “NA” to the

previous AP and next-to-previous AP features; similarly, we

let the next AP feature be “NA” at the end of a day. Fourth,

if a user is offline all day, no association activity template is

generated for her that day.

B. Algorithm Procedure

To give a big picture about how the correlation attack works,

we describe the attack algorithm in this section and defer the

introduction to CRF to Section V-C.

Step 1. For each user in Ls, split his/her association log

into day-to-day pieces and represent each day’s log

using an association activity template as described in

Section V-A.

Step 2. Feed each user’s association activity templates into

a linear-chain CRF to model this user’s association

behavior. As there are Ns users in Ls, we build Ns

CRF models. The input fed to a CRF model is a

sequence of association activity vectors (Figure 1)

and the output is a sequence of association activity

tags, which are actually AP names. Let CRFi(V)
denote the output from the i-th user’s CRF model,

where 1 ≤ i ≤ Ns and V denotes the sequence of

association activity vectors fed to the CRF model.

Step 3. For the observed user association record Q, we

preprocess it as described in Section V-A to obtain

an association activity template T . Let VT and GT
denote the sequence of association activity vectors

and the sequence of association activity tags in

template T , respectively.

Step 4. We feed VT to all CRF models trained in Step 2

and count the number of tags that overlap between

GT and CRFi(VT ) (1 ≤ i ≤ Ns), a score we

denote wi. The intuition applied here is that the

victim’s CRF model is more likely to produce correct

activity association tags from her observed activity

association vectors in Q, and therefore score wi is

higher than the others if IDi is the victim’s identifier

in the released user association log.

Step 5.We sort all users based on score wi in non-increasing

order and the algorithm outputs this sorted list.

Ideally the top identifier on the sorted list should be

treated as the sole candidate that generated the observed

user association sequence Q. In practice, however, due to

incomplete data for training or inference, or some intra- and

inter-user association activity variations, the top identifier may

not correspond to the victim who produced Q. As mentioned

earlier, we tackle the relaxed correlation attack problem instead

and thus use a small number of top identifiers on the sorted

list. Clearly, from the attacker’s perspective, the smaller the

number of top identifiers needed to include the victim’s, the

more successful his attack.

C. Conditional Random Field

One may wonder why we chose CRF models to characterize

users’ AP association behaviors. We explain this choice by

analyzing the nature of the correlation attack problem and also

provide a brief introduction to CRF.

Let X = (X1, X2, ..., Xn) denote a random variable of an

observed sequence, each element of which has k features. In

our problem, a realization of X is a sequence of association

activity vectors with the six features described in Table I. Let

Y denote a random variable of a label sequence. A label

here is actually an association activity tag that indicates an

AP name. According to Figure 1, each association activity

vector corresponds to an association activity tag. Hence, given

an observed sequence of X (i.e., sequence VT in Step 3 of

the algorithm shown in Section V-B), we need to produce

a label sequence for it. It is thus a task of assigning label

sequences to observation sequences, which is common to

many applications in bioinformatics, computational linguistics

and speed recognition [12], [27], [37].

We now explain why here we do not use Hidden Markov

Model (HMM), a popular probabilistic sequence model that

characterizes the joint distribution p(X,Y ) directly [38].

HMM is known to be a generative model in the field of

graphical models. The challenge facing HMM is that it has to

model the entire set of observation sequences p(X) explicitly,

which is intractable in our case (and many other domains)

for two reasons. First, the limited data collected from real-life

network measurement makes it difficult to obtain a full-fledged

p(X). Second, the features in X (the features in the associ-

ation activity vector) can be highly correlated. For example,

Song’s work shows that there is a strong correlation between

the lastest three APs visited by an user [42]. Kim’s work

demonstrates that the time and the location that a user will visit

may follow a periodical pattern [19]. Such dependences among

features are difficult to model within HMM. To circumvent the
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problem, generative models like HMM and Naive Bayes make

independence assumptions that may not be realistic in practice.

Note, however, that modeling the joint distribution for X
and Y (i.e., p(X,Y )) is not important for the sequence labeling

problem at all, because the observation sequences have already

been available to us. What is needed is actually finding

the conditional probability p(Y |X) from the training dataset.

Although it is possible to derive p(Y |X) as
p(Y )p(X|Y )

p(X) based

on Bayes’ rule, the need to model the marginal distribu-

tion p(X) makes it a difficult approach. The CRF method,

in contrast, eliminates the necessity of knowing p(X) by

building models to predict label sequences Y conditional on

observation sequences X . Hence, CRF is indifferent to the

dependence among features in X because X is now treated as

given (i.e., a condition). Because CRF models the conditional

probability p(Y |X) instead of the joint distribution p(X,Y ),
it is a discriminative approach rather than a generative one.

CRF is a special type of undirected graphic model. Let C
denote the entire set of cliques, which are fully connected

subgraphs, in the graph. A clique C ∈ C contains variables

from X , denoted XC , and also variables from Y , denoted

YC . For a generic CRF, the goal is to learn the following

conditional distribution from the training data:

p(Y |X) =
1

Z(X)

∏

C∈C
ψC(YC , XC), (1)

where Z(X), sometimes called the partition function, is a

normalization factor and is given by:

Z(X) =
∑

Y

∏

C∈C
ψC(YC , XC). (2)

Furthermore, ψC is a real-valued potential function on

clique C; a commonly used function is:

ψC(YC , XC) = exp(
∑

i

λifi(YC , XC)), (3)

where fi is a feature function and λi is the weight of feature

function fi.

There is a special type of CRF models, called linear-
chain CRF models, which are particularly useful for solving

sequence labeling problems. Linear-chain CRF models are

conditionally trained as linear chains, instead of generic undi-

rected graphical models. In Figure 2, we show a linear-chain

CRF, where the node representing X is not generated from

the model. In this work, we used CRFsuite [31], a linear-chain

CRF implementation for parameter estimation and inference,

and defined the state feature function and transition feature

function as boolean functions, which are similar to those in

Sutton and McCallun’s book [44]. It is worth noting that many

methods have been proposed to train linear-chain CRF models

and use them for inference. Due to space limitation, we refer

interested readers to the literature for more thorough treatment

on the topic of CRF [44], [24], [46].

Y2 Y3 Yn−1 YnY1

...

1 2 n−1X=X , X , ..., X   , Xn

Label variable Observed variable

Fig. 2. Illustration of linear-chain CRF

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the CRF-

based method for correlation attacks. We use the user associa-

tion log extracted from the SNMP log collected at Dartmouth

College between January 4, 2010 and March 6, 2010, which in

total covered 62 days corresponding to one academic term. In

the original dataset, there were 19,579 distinct MAC addresses,

which contributed to 3,076,318 association records. Because

the WLAN at Dartmouth College is an open network, any one

physically at the campus site can use this network for free, and

thus a great portion of MAC addresses belong to visitors who

have appeared in the logs for only a short period of time.

As training CRF models for these transient users would be

difficult due to insufficient data, we filtered out those users

who were active in fewer than 45 days during this 62-day

period, and the resulting dataset still contained 79.67% of the

user association records with 4,285 distinct users and 1,364

distinct APs. We used this reduced dataset for the experiments

below. All the experiments were performed on four commodity

PCs, which took around four days to finish.

We use the Minimum Size of Candidate Identifier Set
(MSCIS) as the metric to measure the attack efficiency. Con-

sider the relaxed correlation attack problem with a sanitized

user association dataset Ls and an observed sequence of AP

association records Q. For each IDi where 1 ≤ i ≤ Ns in Ls,

we compute score wi according to Step 4 in the CRF-based

method. Suppose that IDj is the user ID of the victim who

generated Q. The MSCIS is defined as the number of user

IDs whose scores are no smaller than wj . MSCIS establishes

an upper bound on how many candidate user IDs need be

considered in order to contain the victim’s user ID in the

sanitized dataset. Note that if a user has the same score as the

victim’s (i.e., wj), his ID should also be counted into MSCIS.

We perform 10-round leave-one-out experiments. The 62-

day user association log is partitioned into 10 bins of ap-

proximately the same length for each user. In the j-th round

(1 ≤ j ≤ 10), we use the j-th bin of each user’s association

records as the testing dataset (Lu) and the remaining nine as

the training dataset (Ls) to build the CRF models. The results

shown below are the 10-round averages.

To set up a baseline case for comparison, we developed a

simple distance-based method described as follows:

Step 1. For each user in Ls, we build a time vector each

day that contains how much time this user spent at
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each AP. The length of a time vector is equal to

the total number of unique APs in the trace, and the

number of time vectors for a given user is equal to

the number of days that the user appeared in Ls.

Step 2. Similarly, we compute a set of daily time vectors

for each user in Lu.

Step 3. For each user in Lu, we compute the Euclidean

distance between each of her time vectors and every

user’s time vectors in Ls, to obtain an average score

for every user in Ls.

Step 4.For each user in Lu, we sort the scores derived from

Step 3 in non-descreasing order to obtain a sorted list

of user IDs in Ls, then compute the MSCIS for each

user in Lu.

Figure 3 compares the results of the CRF-based method

and the distance-based method. The sanitization is done by

anonymizing only the MAC addresses but leaving the other

fields intact (other sanitization strategies will be examined in

Section VII). When the length of Q is 5-6 days, the CRF-based

method significantly outperforms the distance-based method in

attack efficiency: 73.21% of the 4,285 users can be pinpointed

exactly from Ls; for 80.12% of the users, their MSCIS is no

more than 2, meaning that the victim’s ID appears among

the top two candidates according to the CRF-based method;

for 99.72% of the users, their MSCIS is no more than 20.

Hence, using the CRF-based method, the adversary could

almost surely narrow down the victim’s possible user ID into

a set of 20 candidates from the user association dataset with

more than 4,000 users.

By tuning the length of Q to different values (from 5-6

days to 2 or 3 days), we show how the amount of auxiliary

knowledge affects the attack efficiency. Clearly, reducing the

auxiliary knowledge available to the attacker (shorter Q)

degrades the performance of the attack. However, even in

the worst case here that the length of Q is only two days,

the adversary still can pinpoint her identity exactly from Ls

with probability 61.67%, and for 98.51% of the users, he can

narrow down her identity in Ls to only 20 candidates. From

the attacker’s perspective, this is favorable because he needs to

know a victim’s association activities for only a short period

to launch the correlation attack effectively.

VII. MITIGATION STRATEGIES

In the previous section, we play an adversary’s role and

evaluate the effectiveness of the CRF-based correlation attack

under different amount of auxiliary information. As a network

trace publisher in real life and the host of the CRAWDAD

website [10], we are also interested in how well standard

sanitization measures can prevent such privacy breaches.

Generally speaking, there are four categories of approaches

to anonymizing datasets to protect privacy: suppression-based
methods remove information from the data, generalization-
based methods coarsen the level of information released in the

data, perturbation-based methods add noise into the data, and

permutation-based methods swap sensitive associations be-

tween entities [7]. Because the information provided in a user
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Fig. 3. Relationship between the attack performance and the amount of
auxiliary information

association record is already limited, removing any field in it

would make a released dataset hard to use. On the other hand,

the identity information in released AP association records

has been anonymized and thus swapping identity information

between different users does not prevent correlation attacks

discussed in this work. Therefore, in the following we focus

on analyzing the effectiveness of generalization-based and

perturbation-based methods in mitigating correlation attacks.

A. Generalization

Recall that the AP-naming scheme in the user association

logs uses a hierarchical structure: building ID, floor level, and

AP serial number. Hence, it is natural to apply generalization

on the AP names. We consider two generalization schemes

here: one keeping only the building information of each AP,

and the other keeping both the building ID and the floor

level. Using these two generalization schemes, we obtain two

anonymized datasets and then apply the CRF-based method to

launch correlation attacks against them. The results, together

with results from CRF without any generalization, are depicted

in Figure 4. All the experiments in Section VII work on the

same sanitized dataset Ls and unsanitized dataset Lu (with

5-6 days) as those in the previous section.

It is clear that applying generalization-based anonymization

techniques helps mitigate correlation attacks. For instance,

keeping the building and floor level information, the proba-

bility of pinpointing the exact user is reduced from 73.21% to

70.92%, and the probability of having the victim appear among

the top five candidates is reduced from 92.09% to 83.64%;

keeping only the building information, the top one and top five

ratios are further reduced to 64.78% and 74.10%, respectively.

On the other hand, because keeping only the AP’s building

information is the best we can do to generalize AP names,

we can see only limited effectiveness of generalization-based

schemes in mitigating correlation attacks on user association

logs. As a further step, one may consider anonymizing the

building information, such as using a one-way function to

rename them. Its effectiveness is, however, still questionable

as Yoon’s work [48] has shown that it is easy to re-identify
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Fig. 4. Effectiveness of generalization-based mitigation against the proposed
correlation attack

the real building information even though they have been

anonymized in our previously published trace [16].

B. Perturbation

Perturbation is another commonly used technique for data

sanitization. Its key idea is to add some noise into the original

dataset such that user privacy can be preserved while the

usability of the dataset is still ensured. Based on the character-

istics of the user association logs, we consider two perturbation

methods: spatial perturbation and temporal perturbation.

• The spatial perturbation method changes the AP informa-

tion in the original dataset as follows. Let Si denote the

sequence of user IDi’s AP association records, sorted in

increasing order of starting timestamps. For each record

Rj in Si, we change the AP in Rj to the AP in Rj−1

with probability 15%, change it to the AP in Rj+1 with

probability 15%, or keep it intact with probability 70%.

• The temporal perturbation method changes the start and

end timestamps in the original dataset as follows. For

each AP association record, we add Gaussian noise with

mean 0 and standard deviation 3600 seconds to its start

and end timestamps. During the process of adding noise,

we do it sequentially on each user’s AP association

records and ensure that the starting timestamp of the

current AP association record is always greater than the

end timestamp of the previous AP association record after

noise is added.

The effectiveness of both methods in mitigating correla-

tion attacks is illustrated in Figure 5. Not surprisingly, both

methods make it more difficult for the adversary to launch

correlation attacks. Using spatial perturbation, the probability

of pinpointing the exact user is reduced from 73.21% to

67.14%, and the probability of having the victim appear among

the top five candidates is reduced from 92.09% to 88.03%.

On the other hand, if temporal perturbation is applied, the top

one and top five ratios are reduced to 60.77% and 85.83%,

respectively.

Considering the results in Figures 4 and 5, we conclude that

for all the mitigation techniques evaluated, their effectiveness
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Fig. 5. Effectiveness of perturbation-based mitigation against the proposed
correlation attack

in mitigating CRF-based correlation attacks is rather limited.

For instance, none of these methods is able to reduce the

probability of pinpointing the exact user ID below 55%.

Although adding more noise in the perturbation-based methods

can further constrain the adversary’s capability in launching

correlation attacks, it may also damage the usability of the

released user association datasets. In our future work, we

shall consider the detailed use of user association logs (e.g.,

predicting mobility of wireless users [42]) and further explore

the tradeoff between their usability and privacy.

VIII. CONCLUSION

User association logs collected from real-world WLANs

have played an important role in understanding these networks.

Sharing them with the public, however, poses potential risks

to the privacy of the users involved. In this work, we show

that people’s association behaviors form implicit signatures

for individual users. When combined with auxiliary informa-

tion, such signatures can help reveal the true identities of

anonymized IDs in a sanitized WLAN user association log. On

a pessimistic note, standard anonymization techniques, such

as generalization and perturbation, are unable to mitigate such

CRF-based correlation attack effectively. The results from this

work call for a more thorough study of potential privacy risks

when wireless user association logs are shared with the public.
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