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Impact of Time Delays on Power System Stability
F. Milano, Senior Member, IEEE and M. Anghel

Abstract—The paper describes the impact of time-delays on
small-signal angle stability of power systems. With this aim, the
paper presents a power system model based on delay differential
algebraic equations (DDAE) and describes a general technique
for computing the spectrum of DDAE. The paper focuses in par-
ticular on delays due to the terminal voltage measurements and
transducers of automatic voltage regulators and power system
stabilizers of synchronous machines. The proposed technique is
applied to a benchmark system, namely the IEEE 14-bus test
system. Time domain simulations are also presented to confirm
the results of the DDAE spectral analysis.

Index Terms—Time delay, delay differential algebraic equa-
tions (DDAE), automatic voltage regulator (AVR), power system
stabilizer (PSS), small-signal stability, Hopf bifurcation (HB),
limit cycle.

I. INTRODUCTION
A. Motivation
Including time delays in the classical electromechanical

model leads to formulating power systems in terms of func-
tional differential algebraic equations of retarded type or, more
concisely, delay differential algebraic equations (DDAE). The
study of the stability of DDAE is relatively more complicated
than that of standard differential algebraic equations (DAE).
Nevertheless, both theoretical tools for DDAE and modern
computers are mature enough to allow tackling the stability of
large scale DDAE systems. This paper presents a systematic
approach for defining small signal stability as well as time
domain integration of power systems modeled as DDAE.

B. Literature Review
Time delays arises in a wide variety of physical systems

and their effects on stability have been carefully investigated
in several engineering applications, such as signal processing
and circuit design [1]–[4]. Nevertheless, little work has been
carried out so far in the power system area on the effects of
time delays on power system stability. As a matter of fact,
time delays are generally ignored. An exception to this rule
is [5], which presents a model of long transmission lines in
terms of DDAE.
In recent years, wide measurement areas make necessary

remote measures, which has led to some research on the effect
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of measurement delays. For example, [6] and [7] present a
robust control of time delays for wide-area power system
stabilizers, and [8] tackles the issue of the time domain
integration of DDAE. The effect on small signal stability of
delays due to PMU measurements are studied in [9] based on
a probabilistic approach.
Existing studies on small signal stability of delayed power

system equations can be divided into two main categories.

1) Evaluation of the roots of the characteristic equation
of the retarded system [9]–[11]. This approach is in
principle exact but due to the difficulty in determining
the roots of the characteristic equation (see Section II-
A), the analysis is limited to one-machine infinite-bus
(OMIB) systems.

2) Direct methods such as the Lyapunov-Krasovskii func-
tional [12] and [13]. This approach can be applied to
systems bigger than the OMIB but does not provide a
necessary and sufficient stability criterion, nor an exact
solution. In [12] the case with multiple delays is studied
in AVR measures for the 9-bus WSCC bus system.

Since direct methods suffer from modeling issues as well
as from the idiosyncratic lack of a necessary and sufficient
stability condition to define the stability, we consider that the
most promising approach is the first one, i.e., that based on
the determinations of the roots (spectrum) of the characteristic
equations of the retarded system.
Although an exact explicit analytical method based on the

Lambert W function can be applied to simple cases [14],
the analytical solution of the characteristic equation cannot
be found for practical power systems. Thus, several numerical
methods have been proposed in the literature to approximate
the solution of the characteristic equation. A possible approach
is based on the discretization of the solution operator of the
characteristic equation [15]. Other methods estimate the in-
finitesimal generator of the solution operator semi-group [16],
and the solution operator approach via LMS time integration
of retarded systems without any distributed delay term [17]–
[19].
Other approaches apply a discretization scheme based on

Chebyshev’s nodes [20]–[22]. These methods are based on
a discretization of the partial differential equation (PDE)
representation of the DDAE. The implementation of such
discretization is surprisingly simple while results proved to
be accurate. Hence, this is the technique used in this paper.
The idea is to transform the original DDAE problem into an
equivalent PDE system of infinite dimensions. Then, instead
of computing the roots of retarded functional differential
equations, one has to solve a finite, though possibly large,
matrix eigenvalue problem of the discretized PDE system.



C. Object of the Paper
In this paper, we are interested in determining whether the

inclusion of delays can affect the small-signal stability and
whether such delays can reduce the expected stability margin
of a power system. Both mathematical and computational
aspects are taken into account so that the proposed procedures
for small-signal analysis as well as for time domain integration
can be in principle applied to a power system of any size and
complexity. Moreover, we show that the implementation of
ideal constant delays is particularly straightforward and does
not affect the numerical stability of the implicit trapezoidal
method that is used in most power system analysis software
tools.

D. Contributions
The contributions of the paper are the following:
1) To define a general DDAE model of power systems. In
particular, the index-1 Hessenberg form of retarded type
is adopted.

2) To propose a method for defining the small-signal sta-
bility of DDAE based on eigenvalue analysis and an ap-
proximation of the characteristic equation at equilibrium
points.

3) To evaluate the effect on stability of taking into account
delays in measurements. With this aim, the case study
considers delays introduced by the excitation control as
well as by the power system stabilizer of synchronous
machines.

E. Paper Organization
The remainder of the paper is organized as follows. Section

II defines the structure of DDAE that is adequate for power
system modeling. Subsection II-A proposes a technique for
evaluating the small-signal stability of DDAE equilibrium
points based on an approximate solution of the characteristic
equation while Subsection II-B describes the modifications
required by the implicit trapezoidal method for integrating
DDAE. Section III presents the AVR model with inclusion of
a time delay. Section IV discusses simulation results obtained
for the IEEE 14-bus test system. Conclusions are drawn in
Section V.

II. DDAE FOR POWER SYSTEM MODELING
The transient behavior of electric power systems is tradition-

ally described through a set of differential algebraic equations
(DAE) as follows:

ẋ = f(x,y,u) (1)
0 = g(x,y,u)

where f (f : R
n+m+p �→ R

n) are the differential equations, g
(g : R

n+m+p �→ R
m) are the algebraic equations, x (x ∈ R

n)
are the state variables, y (y ∈ R

m) are the algebraic variables,
and u (y ∈ R

p) are discrete variables modeling events, e.g.,
line outages and faults.
In common practice, equations (1) are split into a collection

of subsystems where discrete variables u are substituted for

if-then rules. Thus, (1) can be conveniently rewritten as a finite
collection of continuous DAEs, one per each discrete variable
change. Such a system is also known as hybrid automaton
or hybrid dynamical system. An in-depth description and
formalization of hybrid systems for power system analysis can
be found in [23].
The stability of power systems in the form of (1) or in

its equivalent hybrid formulation have been object of intense
studies in the last decades. Just to give some examples,
consider [24], [25] and [26].
Despite the fact that (1) are well-accepted and are the

common choice in power system software packages, some
aspects of the reality are missing from this formulation, e.g.,
stochastic processes and variable functional relations. In this
paper, we are interested in defining the possible effects on
stability of time delays. Introducing time delays in (1) changes
the DAE into a set of delay differential algebraic equations
(DDAE). For the sake of simplicity, we only consider ideal
constant time delays in the form:

yd = y(t − τ) (2)

where yd is the retarded or delayed variable with respect to
some algebraic variable y, t is the current simulation time,
and τ (τ > 0) is the constant delay. A similar expression,
with obvious notation, can be written in case the delay affects
a state variable:

xd = x(t − τ) (3)

Merging together (1), (2) and (3) leads to:

ẋ = f(x,y,xd,yd,u) (4)
0 = g(x,y,xd,yd,u)

Equations (4) are the most general form of nonlinear DDAE.
However, for practical models of physical systems, some
simplifications can be adopted. In particular, the index-1
Hessenberg form given in [27], [28] is adequate to model
power systems:

ẋ = f(x,y,xd,yd,u) (5)
0 = g(x,y,xd,u)

which is a simplification of (4). The index-1 Hessenberg form
(5) is used in the remainder of the paper.
In this paper, we are interested in (i) numerically integrating

(4) and (ii) defining the small-signal stability of (4). These
topics are addressed in the following subsections.

A. Small-Signal Stability of Hessenberg DDAE of Retarded
Type
Assume that a stationary solution of (5) is known and has

the form:

0 = f(x0,y0,x0,y0,u0) (6)
0 = g(x0,y0,x0,u0)

Then, linearizing (5) at the stationary solution yields:

Δẋ = f
x
Δx + f

xd
Δxd + f

y
Δy + f

yd
Δyd (7)

0 = g
x
Δx + g

xd
Δxd + g

y
Δy (8)
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where, as usual, it can be assumed that g
y
is non-singular.

Thus, substituting the second of (7) into (8), one obtains:

Δẋ = A0Δx + A1Δx(t − τ) + A2Δx(t − 2τ) (9)

where:

A0 = f
x
− f

y
g−1

y
g

x
(10)

A1 = f
xd

− f
y
g−1

y
g

xd
− f

yd
g−1

y
g

x
(11)

A2 = −f
yd

g−1
y

g
xd

(12)

The first matrix A0 is the well-known state matrix that is
computed for standard DAE system of the form (1). The other
two matrices are not null only if the system is of retarded
type. Observe that (9) is equivalent to the linearization of
the DDE system obtained by substituting y for a function
y = ρ(x,xd) that satisfies, at least in a neighborhood of the
stationary solution:

0 = g(x,xd,ρ(x,xd)) (13)

Although the existence of the function ρ is guaranteed by
the implicit function theorem, it is generally impossible to
find explicitly such a function for practical systems. However,
(9) provides the same asymptotic stability information for the
original DDAE problem (5) as that of the theoretical DDE
problem obtained by substituting the algebraic variable with
the formal ρ function.
Equation (9) is a particular case of the standard form of the

linear delay differential equations:

ẋ = A0x(t) +

ν∑
i=1

Aix(t − τi) (14)

where, in this case, ν = 2, τ1 = τ and τ2 = 2τ . The
substitution of a sample solution of the form eλtυ, with υ

a non-trivial possibly complex vector of order n, leads to the
characteristic equation of (14):

det Δ(λ) = 0 (15)

where

Δ(λ) = λIn − A0 −

ν∑
i=1

Aie
−λτi (16)

is called the characteristic matrix [29]. In (16), In is the
identity matrix of order n. The solutions of (16) are called
the characteristic roots or spectrum, similar to the finite-
dimensional case (i.e., the case for which Ai = 0 ∀i =
1, . . . , ν ). However, since (16) is transcendental, it has in-
finitely many roots, and thus one can only approximate the
solution of (16) computing a reduced set of its roots.
Similar to the finite-dimensional case, the stability of (14)

can be defined based on the sign of the roots of (16), i.e.,
the stationary point is stable if all roots have negative real
part, and unstable if there exists at least one eigenvalue with
positive real part.
Although the number of roots is infinite, there are two

useful properties of the characteristic matrix that allows its
exploitation for stability studies, as follows [29].

1) Equation (16) only has a finite number of characteristic
roots in any vertical strip of the complex plane, given
by {λ ∈ C : α < �(λ) < β}

2) There exists a number γ ∈ R such that all characteristic
roots of (16) are confined to the half-plane {λ ∈ C :
�(λ) < γ}.

These properties basically imply that the number of solutions
in the right-half of the complex plane is finite and, clearly, if
γ ≤ 0, there is no eigenvalue with positive real part. Thus,
when one is only interested in the small-signal stability of the
stationary solution of (5), the problem of finding the roots
of (16) reduces to the problem of finding a finite number
(possibly none) of roots of (16) with positive real part or
poorly damped.
As briefly discussed in the Introduction, the idea to find an

exact explicit solution of (16) has to be abandoned for practical
systems. In this paper we use the technique proposed in [20]–
[22] based on recasting (14) as an abstract Cauchy problem.
This approach consists in transforming the original problem
of computing the roots of a retarded functional differential
equations as a matrix eigenvalue problem of a PDE system
of infinite dimensions and then approximating such system by
means of a finite element method.
To better illustrate the method, let us assume some simpli-

fications. First, assume that (5) has only one delay τ common
to all retarded variables. Moreover, assume that A2 = 0. This
hypothesis is actually a consequence of considering that in
(5) only algebraic variables depend on the delay. Hence, (5)
becomes:

ẋ = f(x,y,yd,u) (17)
0 = g(x,y,u)

and from (11) and (12) one obtains:

A1 = −f
yd

g−1
y

g
x
, A2 = 0 (18)

from which, (16) becomes:

Δ(λ) = λIn − A0 − A1e
−λτ (19)

Observe that the simplified index-1 Hessenberg form (17) is
generally sufficient to describe electric power systems [8] and
it is also the form used in the case study of this paper.
Then, one has to choose the numbers of nodes compos-

ing Chebyshev’s discretization scheme, say N . This number
affects the precision and the computational burden of the
method, as it is explained below. Let DN be Chebyshev’s
differentiation matrix of order N (see Appendix I) and define

M =

[
Ĉ ⊗ In

A1 0 . . . 0 A0

]
(20)

where ⊗ indicate Kronecker’s product (see Appendix II); In

is the identity matrix of order n; and Ĉ is a matrix composed
of the first N − 1 rows of C defined as follows:

C = −2DN/τ (21)

Then, the eigenvalues of M are an approximated spectrum of
(19). Other schemes that involve a more complex structure of
M can be found in [30]–[32].
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Roughly speaking, one can see M as the discretization of a
PDE system where the continuous variable, say ξ, corresponds
to the time delay. Then ξ is discretized along a grid of N
points. The position of such points are defined by Chebyshev’s
polynomial interpolation. The last n rows of M correspond to
the PDE boundary conditions ξ = τ (e.g.,A1) and ξ = 0 (e.g.,
A0), respectively. This suggests also how to generalize M for
a case of characteristic equations with ν > 1. For example,
the matrix M for ν = 2 can be formulated as follows:

M =

[
Ĉ ⊗ In

A2 0 . . .0 A1 0 . . .0 A0

]
(22)

where N+1 must be odd to allowA1 being in the central node
of Chebyshev’s grid. As it can be expected, the general case
with multiple delays can be assessed at the cost of increasing
N and, hence, the size of the matrix M , and of modifying
accordingly its last n rows. The interested reader can find
further insights on the multiple delay case in [22] and [31].
For the sake of simplicity, in this paper, only the case of a
single delay is considered. This assumption is justified by
the fact that the delays originate from an unique device type,
e.g., the synchronous machine AVR, whose functioning has to
be expected to be very similar, if not the same, for different
machines.

B. Numerical Integration of Hessenberg DDAE of Retarded
Type
Integrating general delay differential equations is not an

easy task and specific methods have to be developed to avoid
numerical instability. For example, despite being A-stable for
standard DAE equations, the implicit trapezoidal method may
shows numerical issues in case of DDAE [21]. Thus, specific
time integration methods for DDAE have been developed [27],
[33]–[35]. We cite for example the two-stage Lobatto IIIC
method [21].
Although the general case can show interesting numerical

issues, in this paper we focus only on a subset of DDAE,
namely the index-1 Hessenberg form (5). Furthermore, since
most power system programs internally implement an implicit
trapezoidal method for time domain integration, we provide
the modifications that are required to adapt the implicit trape-
zoidal method to (5). As it is shown below, and given the
delay models (2) and (3), the trapezoidal method does not
need actually any particular change, and it is thus expected to
be stable.
Before considering (2) and (3), let us define, for the sake

of generality two general functional expressions:

0 = φ(x,xd, t) = x̂(α(x, t)) − xd (23)
0 = ψ(y,yd, t) = ŷ(β(y, t)) − yd (24)

where α(x, t) and β(y, t) represent the functional dependence
of state and algebraic variables on the delays. For the pure
constant delays (2) and (3), one simply has:

α(x, t) = t − τ , β(y, t) = t − τ , (25)

but, of course, more complex expressions can be considered
[21].

The implicit trapezoidal method for standard DAE (1)
requires factorizing at each iteration i the Jacobian matrix [36]:

A(i)
c =

[
In − 0.5Δtf (i)

x
−0.5Δtf (i)

y

g
(i)
x g

(i)
y

]
(26)

where Δt is the time step at iteration i. Applying the same
rule to (5) and using the functional equations (23) and (24),
one obtains:

Ac = (27)⎡
⎢⎢⎣

In − 0.5Δtf
x

−0.5Δtf
y

−0.5Δtf
xd

−0.5Δtf
yd

g
x

g
y

g
xd

0

φ
x

0 φ
xd

0

0 ψ
y

0 ψ
yd

⎤
⎥⎥⎦

where the superscript i has been omitted to simplify the
notation. From (23) and (24), φ

xd
and ψ

yd
are identity

matrices, while φ
x
and ψ

y
can be obtained by the chain rule:

φ
x

= diag
{

˙̂x(x, t)
}

αx (28)

ψ
y

= diag
{

˙̂y(y, t)
}

β
y

(29)

where ˙̂x(x, t) and ˙̂y(y, t) are the rate of change of x and y

at time α(x, t) and β(y, t), respectively, i.e., some time in
the past. While ˙̂x(x, t) is easy to obtain by simply storing
ẋ during the time domain integration, ˙̂y(y, t) requires an
extra computation, i.e., solving at each time t the following
equation:

0 = g
x
f + g

y
ẏ + g

xd

˙̂xαt (30)

from which ẏ can be obtained (if g
y
is not singular) and

stored. Observe that ẏ can be discontinuous.
The simple structure of the Jacobian matrices of φ and ψ

allows rewriting (27) as:

Ac = (31)[
In − 0.5Δt(f

x
+ f

xd
φ

x
) −0.5Δt(f

y
+ f

yd
ψ

y)

g
x

+ g
xd

φ
x

g
y

]

From (2) and (3), it is straightforward to observe that αx =
0 and β

y
= 0 and, hence, φ

x
= 0 and ψ

y
= 0. This fact

basically implies that, in case of pure constant delays, (26)
and (31) coincide. This results was to be expected since at a
given time t, both xd and yd, i.e., state and algebraic variables
delayed by τ , are constants.

III. MODELING THE SYNCHRONOUS MACHINE
EXCITATION CONTROL SYSTEM

The general functional block of a synchronous machine
excitation system is depicted in Fig. 1. The main signals
required by the excitation system are the voltage signal vc, the
field voltage vf and current if , the reference voltage vref and
additional inputs, such as the power system stabilizer signal
vs and the over- and under-excitation signals, voxl and vuxl,
respectively.
The voltage signal vc is a function of the synchronous

machine terminal voltage v̄T and current īT if the load
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vs

vc

vr

vref

vuxl

voxl

v̄T

īT

vsi

vf

if

Exciter
Excitation
Control
Elements

Terminal Voltage
Transducer and
Load Compensator

Synchronous
Machine
and Power
System

Power System
Stabilizer and
Supplementary
Discontinuous
Excitation Control

Fig. 1. General functional block diagram for synchronous machine excitation
control system [37].

compensation is used and of the transducer dynamics, as
follows:

v′

c = |v̄T ± (rc + jxc)̄iT | (32)
v̇c = (v′

c − vc)/Tr (33)

where rc and xc are the load compensation resistance and
reactance, respectively, and Tr is a time constant that take
into account the transducer low pass filter and delay [38].
The excitation control system output signal vr depends on

the AVR type. For static exciters, vr is a voltage signal that
is processed through transducers and gate pulse generators
to properly control the thyristor bridge that feeds the field
winding of the generator. Finally, the excitation control system
typically consists of digital hardware [39], [40] or, in most
recent systems, of a programmable logic controller (PLC) [41].
In the common practice, pure delays introduced by the

transducers and the control digital system are neglected. Most
of these delays are negligible indeed. For example digital
amplifiers and analog-to-digital converters have delays of the
order of 10 μs, while anti-aliasing-filters have a delay of
about 70 μs and decimation stages of about 225 μs [42].
However, the PLC executes the AVR algorithms and other
AVR secondary functions within a 3 to 15 ms period [41].
If the voltage controlled by the AVR is on a remote bus,
measurement delays can drastically increase, i.e., more than
100 ms [7].
In this paper, we propose to take into account the delays

introduced by the excitation control system by including an
overall delay in the output signal v′

c of the terminal (or remote)
voltage transducer. Thus, equation (33) becomes:

v̇c = (v′

c(t − τv) − vc)/Tr (34)

If, for simplicity, but without loss of generality, load compen-
sation is not used, the delay affects directly the synchronous
machine terminal voltage, and (32)-(33) become:

v̇c = (vT (t − τv) − vc)/Tr (35)

Similarly to AVR delays (34) or (35), we also consider
delays in the measures of the PSS vsi similarly to the work
that was done in [7]. Also in this case, local measures have at

Kw

ω(t − τω) vs

vmax
s

vmin
s

Tws

Tws + 1

T1s + 1

T2s + 1

T3s + 1

T4s + 1

Fig. 2. Power system stabilizer control diagram [36].

most a few ms delay while remote measures can be affected
by a delay of up to 100 ms or more [7]. In typical PSSs, the
signal vsi is the synchronous machine rotor speed ω, which is
a state variable. Hence, in this case, one has xd = ω(t− τω).
Moreover, a typical PSS control scheme include a washout
filter and two lead-lag blocks (see Fig. 2). Thus the retarded
measure of ω propagates in the PSS equations, as follows:

v̇1 = −(Kwω(t − τω) + v1)/Tw (36)

v̇2 = ((1 −
T1

T2
)(Kwω(t − τω) + v1) − v2)/T2

v̇3 = ((1 −
T3

T4
)(v2 + (

T1

T2
(Kwω(t − τω) + v1))) − v3)/T4

0 = v3 +
T3

T4
(v2 +

T1

T2
(Kwω(t − τω) + v1)) − vs

where v1, v2 and v3 are state variables introduced by the PSS
washout filter and by lag blocks and other parameters are
illustrated in Fig. 2. Observe that equations (36) are in the
form of (5).

IV. CASE STUDY
There are at least two possible ways of approaching the

study of bifurcation points and, hence, the small-signal stabil-
ity, of a retarded system.
1) To define the maximum delay τ that drives the system
to the frontier of the stability region. This is basically
the delay margin definition given in [11]. This definition
makes sense if the delay is an independent variable and
there is only one delay to deal with. In this case, the
delay can be viewed as a bifurcation parameter similarly
to the loading parameter in voltage stability studies [43].

2) To define the properties of the equilibria of the retarded
system. Delays are given as the functionals (23) and
(24). In this case, delays are system variables, i.e.,
xd and yd in (5), of any order, while the bifurcation
parameter can be, for example, a scalar loading factor
μ that multiplies load power consumptions as in voltage
and small-signal angle stability studies [43] and [44].

Both analyses are considered in this paper, however, we
consider that the second approach is the one with most
practical interest. In particular, Subsection IV-B describes the
bifurcation analysis as well as the power system model used
to define the loading margin for the DDAE and IV-C depicts
and discusses some relevant time domain simulation results.
The system considered in this paper is the IEEE 14-bus

system that is shown in Fig. 3. The system consists of two
generators, three synchronous compensators, two two-winding
and one three-winding transformers, fifteen transmission lines,
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Fig. 3. IEEE 14-bus test system.

eleven loads and one shunt capacitor. Not depicted in Fig. 3,
but included in the system model, are generator controllers,
such as the primary voltage regulators. All dynamic data of
this system as well as a detailed discussion of its transient
behavior can be found in [36].
The AVR control scheme of the dc exciter model used in

this case study and is a simplified version of the classic IEEE
type DC1 that is defined in [37] and fully described in [36].
The standard IEEE type DC1 model does not include time
delays.
All simulations and plots are obtained using a novel

Python-based version of PSAT [45]. This PSAT version re-
quires Python 2.7.1 (http://www.python.org), Numpy
1.5.1 (http://numpy.scipy.org), CVXOPT 1.1.3
(http://abel.ee.ucla.edu/cvxopt/), and Matplot-
lib 1.0.0 (http://matplotlib.sourceforge.net/)
and has been executed on the 64 bit Mac OS X Snow Leopard
10.6.5 platform running on a 2.66 GHz Intel Core 2 Duo with
8 GB of RAM.

A. Computational Burden of the Spectrum Evaluation
Before entering into the details of the stability analysis

of the DDAE, it is worthwhile to discuss the computational
burden of the proposed technique for evaluating an approx-
imated solution of (16). With this aim, Table I shows the
computational burden of the spectrum analysis for the IEEE
14-bus system for τv = 5 ms and for different values of N .
Table I also shows the computational burden of the standard
eigenvalue analysis (i.e., no delays) that consists in solving

Δ(λ) = Inλ − As (37)

where As is the state matrix of the DAE system obtained ne-
glecting time delays in the AVR model. This case is indicated
as N = 1 in Table I. Moreover, NNZ indicates the number
of non-zero elements of matrix M . The size of M is N · n,
where n is the dynamic order of the system (in this example,
n = 49). Observe that the matrix M is highly sparse and its

TABLE I
COMPUTATIONAL BURDEN OF THE SPECTRUM ANALYSIS FOR τv = 5 ms

AND FOR THE IEEE 14-BUS SYSTEM FOR DIFFERENT VALUES OF N

N CPU time (s) N · n (N · n)2 NNZ NNZ/(N · n)2

1 0.62 49 2 401 776 32.3%

5 0.71 245 59 049 1 707 2.83%

10 1.15 490 240 100 5 186 2.15%

20 6.98 980 960 400 19 396 2.02%

40 75.4 1 960 3 841 600 77 216 2.01%
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Fig. 4. Root loci of the IEEE 14-bus system modeled as a DDAE for τv = 5
ms and for different values of N .

sparsity increases as N increases. CPU times given in Table
I refers to the computation of all eigenvalues of M . Clearly,
the higher N , the higher the CPU time.
Figure 4 shows the root loci of M for the IEEE 14-bus

system for different values of N . Most eigenvalues have a
very high frequency. Actually, only a very reduced number
of eigenvalues is interesting for small-signal stability analysis,
i.e., those that have positive real part or that are closer to the
imaginary axis. This fact allows using some efficient technique
for determining only a reduced number of eigenvalues of M

(e.g., power method, Rayleigh’s iteration, etc.). The interested
reader can a description of efficient iterative methods for
determining a reduced number of eigenvalues in [36].
Figure 5 shows a zoom of the eigenvalue loci depicted

in Fig. 4. It is interesting to observe that the eigenvalues of
M closest to the imaginary axis are not sensible to N . The
values shown in Fig. 5 vary less than 10−6 when N varies
from 5 to 40. From the computational viewpoint, this is an
important advantage of the proposed method for computing
the spectrum of (16). Since the sensitivity of the rightmost real
part eigenvalues is little with respect to N , one can keep N
relatively small and, hence, reduce the computational burden
while evaluating the spectrum of (16).
From observing Fig. 5, only two complex eigenvalues ap-

pears to be critical, since have a damping ratio lower than 5%.1

1The zero eigenvalue shown in Figs. 4 and 5 is due to the arbitrariness of
the synchronous angle reference and, hence, does not indicate a bifurcation.
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Fig. 5. Zoom close to the imaginary axis of the root loci of the IEEE 14-bus
system modeled as a DDAE for τv = 5 ms and for different values of N .

The fact that among all eigenvalues only very few are critical
is a quite general result that applies for the majority of power
systems. Thus, a possible efficient strategy for computing the
critical eigenvalues of a DDAE system is as follows:
1) Compute the eigenvalues of the state matrix of order

n of the system without considering delays. This is a
standard eigenvalue analysis of a DAE system.

2) The critical eigenvalues and the associated eigenvectors
obtained in the previous point can be used as initial
guess for starting an iterative and efficient method such
as the Rayleigh’s iteration over the matrix M .

According to this technique, the eigenvalue analysis of the
DDAE system reduces to a standard eigenvalue analysis plus
a certain number of matrix multiplications which have little
computational burden compared to complete eigenvalue anal-
ysis of the full matrix M . Applying such technique to the
IEEE-14 bus system, we obtained CPU times of about 0.68 s
for determining the two complex eigenvalues with rightmost
real part. It has to be expected that the higher the dynamic
order n of the system, the higher the time saving.

B. Bifurcation Analysis
In this subsection, we analyze the bifurcation analysis

for the IEEE 14-bus system using two different bifurcation
parameters: (i) the time delay τv; and (ii) the loading level of
the system. While the first approach was proposed in [11], the
latter technique is the most common bifurcation analysis that
leads to obtain the well-known nose curves [43].
1) Using the time delay as the bifurcation parameter:

The simulation presented in this section are aimed to define
whether the inclusion of delays in the AVR equations of the
IEEE 14-bus system can be approximated using the standard
DAE model. We consider two cases: (i) equations (35), and
(ii) a modified version of (33) in which the delay is summed
to the filter time constant Tr:

v̇c = (vT − vc)/(Tr + τv) (38)

Fig. 6. Real part of the critical eigenvalue λc of the IEEE 14-bus system as
a function of the AVR voltage measure time delay τv .

For similarity with (35), but without lack of generality, no load
compensation is considered in (38). In both cases, Tr = 0.001
s is used.
Figure 6 shows the real part of the critical eigenvalue λc

of the IEEE 14-bus system as a function of the AVR voltage
measure time delay τv , which is varied in the interval [0, 150]
ms. For τv < 15 ms, the difference between the DAE and
the DDAE models is negligible. This result actually confirms
the common practice of neglecting constant delays for local
measures of terminal voltage. However, as the delay increases,
the difference between the DAE and DDAE system is quite
evident. This justifies the use of the DDAE model in case of
remote measures of bus voltages used as input signals of the
AVR system.
The Hopf bifurcation (HB) occurs for τv ≈ 6.3 ms, which

is thus the delay margin of the AVRs. In this case the HB
occurs in a region for which the DAE and the DDAE models
behave similarly. Thus, there is no clear advantage of using
the DDAE model in this case. The usefulness of the DDAE
model is better shown in Subsection IV-C that concerns the
behavior of the PSS with remote measures.
Observe that lim�(λc) for τv → 0 is the same for both

the DAE and the DDAE models. In fact, as τ → 0, (16)
degenerates as:

lim
τ→0

Δ(λ) = Inλ − (A0 + A1) = Inλ − As (39)

The fact that A0 + A1 → As as τ → 0 can be seen in two
ways, as follows.
1) As τ → 0, yd and xd degenerate into non-delayed
variables y and x, respectively, hence A1 has to be
merged into A0

2) If τ = 0, yd = xd = 0 and A1 = 0, whereas A0 has
to be recast and A0 = As.

In any case, (39) must hold. Observe also that M cannot be
computed for τ = 0 due to the definition of C in (21).
2) Using the loading level as the bifurcation parameter:

In this case, we use a scalar variable, say μ, to parametrize
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TABLE II
LOADING LEVELS μHB CORRESPONDING TO THE OCCURRENCE OF HB

FOR THE IEEE 14-BUS SYSTEM FOR DIFFERENT VALUES OF τv

τv [ms] μHB [pu] Δμ [%]
0 1.202 -
1 1.175 2.24

5 1.048 12.8

10 0.805 33.0

the loading level of the overall system, as follows [36]:

pG = (μInG
+ kGΓ)pG0 (40)

pL = μpL0

qL = μqL0

where InG
is the identity matrix of order nG, being nG

the number of generators, Γ = diag(γ1, γ2, . . . , γnG
) are

generator loss participation factors, kG is a scalar variable used
for accomplishing the distributed slack bus model as discussed
in [36] and pG0, pL0 and qL0 are the “base case” or initial
generator and load powers, respectively. This is the common
model used in continuation power flow studies [43]. For each
value of μ a power flow solution is found and the equilibrium
of the DAE system is computed.
An HB occurs for μ ≈ 1.202 if considering the standard

DAE model and no contingencies [36]. Table II shows the
values of the loading level μ for which a HB occurs for
different values of τv . As it was to be expected from the
discussion in the previous section, as τv increases, the HB
occurs for lower values of μ. Observe that for τv = 10 ms,
μHB < 1, which means that the base case operating condition
is not stable. Similar tables can be obtained considering
contingencies, which are not included in the paper for the
sake of space. The results of Table II can be viewed in two
different ways:
1) The effect of time delays is actually that of reducing
the loading margin of the system. This is the direct
information given in Table II.

2) The effect of time delays can be interpreted as a “virtual”
load increase. For example, τv = 5 ms is equivalent to
a load increase of 12.8%.

In any case, there is a clear interest in reducing as much as
possible control time delays.

C. Time Domain Simulation Results
In this subsection, we illustrate through time domain simula-

tions the effect of the time delay in the measure of synchronous
machine rotor speed when used as input signal for the PSS
device. From [36], it is known that the IEEE 14-bus system is
prone to show an HB if increasing the loading level by 20%
with respect to the base case and applying a line 2-4 outage.
The HB can be removed by including the PSS of Fig. 2 in the
excitation control scheme of the machine connected to bus 1.
For the sake of example, we assume that such PSS is

affected by a delay τω in the measure of ω. Furthermore,
to force instability, we also assume that the measure of ω

Fig. 7. Rotor speed ω of machine 5 for the IEEE 14-bus system with a 20%
load increase and for different control models following line 2-4 outage at
t = 1 s.

is remote. This hypothesis can be justified by observing that
the machine at bus 1 is actually an equivalent model of a
bigger network (in fact the IEEE 14-bus system is obtained
by simplifying the IEEE 30-bus system). Thus, if we assume
that such equivalent network includes an SPSS as described
in [7], we can consider a delay of tens of milliseconds in
the measure of ω (e.g., 100 ms delay is used in [7]). In the
following example, we only consider the delay in the PSS
model and no delays in the AVR measures.
By repeating the analysis of the delay margin, we obtain that

for a 20% increase of the loading level with respect of the base
case and for line 2-4 outage, a HB occurs for τω ≈ 68.6 ms.
However, without the line outage, the HB occurs for τω > 72
ms. Thus, setting 72 > τω > 69 ms, it has to be expected that
the transient following line 2-4 outage is unstable, while the
initial equilibrium point without contingency is stable, though
poorly damped.
Figure 7 shows the time response of the IEEE 14-bus system

without PSS, with PSS and with retarded PSS with τω = 71
ms. As already known from [36], the trajectory of the system
without PSS enters into a limit cycle after the line outage while
the system with PSS is asymptotically stable. The behavior of
the system with retarded PSS is similar to the case without
PSS, i.e., shows a limit cycle trajectory. This results was to be
expected, since if τω → ∞, the PSS control loop opens and
the effect is the same as the system without PSS. However,
the small-signal stability is able to determine the exact value
for which the HB occurs. The added value of the time domain
simulation is to show that the system trajectory enters into a
limit cycle rather than diverging.

V. CONCLUSIONS

This paper presents a relatively simple, yet efficacious
method to define the small-signal stability of power systems
modeled as DDAE. In particular, the index-1 Hessenberg form
appears to be adequate for modeling the behavior of generic
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power systems when delays are taken into account. The pro-
posed technique allows estimating an approximate solution of
the characteristic equation of DDAE based on the Chebyshev’s
differentiation matrix. The advantage of the method is that it
is able to precisely estimate the rightmost eigenvalues while
maintaining a tractable computational burden. The proposed
technique is then applied to evaluate the delay margin as well
as the effect of delays on the loading margin of the IEEE
14-bus test system. AVR as well as PSS measure delays are
considered and the results of small-signal stability analysis are
confirmed by time domain simulations.
The main conclusion of this papers is that it is important to

properly model time delays since these considerably affect the
behavior of the overall power system, especially if considering
remote measures. The work presented in the paper suggests
some interesting future research directions, such as considering
multiple as well as time-varying time delays.
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APPENDIX I
CHEBYSHEV’S DIFFERENTIATION MATRIX

Chebyshev’s differentiation matrix DN of dimensions N +
1 × N + 1 is defined as follows. Firstly, one has to define
N +1 Chebyshev’s nodes, i.e., the interpolation points on the
normalized interval [−1, 1]:

xk = cos

(
kπ

N

)
, k = 0, . . . , N. (41)

Then, the element (i, j) differentiation matrix DN indexed
from 0 to N is defined as [46]:

D(i,j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci(−1)i+j

cj(xi−xj)
, i �= j

− 1
2

xi

1−x2
i

, i = j �= 1, N − 1
2N2+1

6 , i = j = 0

− 2N2+1
6 , i = j = N

(42)

where c0 = cN = 2 and c2 = · · · = cN−1 = 1. For example,
D1 and D2 are:

D1 =

⎡
⎣ 1

2 − 1
2

1
2 − 1

2

⎤
⎦ , with x0 = 1, x1 = −1 .

and

D2 =

⎡
⎢⎢⎢⎣

3
2 −2 1

2

1
2 0 − 1

2

− 1
2 2 − 3

2

⎤
⎥⎥⎥⎦ , with x0 = 1, x1 = 0, x2 = −1 .

APPENDIX II
KRONECKER’S PRODUCT

If A is a m × n matrix and B is a p × q matrix, then
Kronecker’s product A⊗B is an mp×nq block matrix [47],
as follows:

A ⊗ B =

⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ (43)

For example, let A =

[
1 2 3
3 2 1

]
and B =

[
2 1
2 3

]
.

Then:

A ⊗ B =

[
B 2B 3B

2B 2B B

]
=

⎡
⎢⎢⎣

2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3

⎤
⎥⎥⎦

Observe that A ⊗ B �= B ⊗ A.
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