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Abstract

We develop, analyze, and test a training algorithm for support vector machine clas-
sifiers without offset. Key features of this algorithm are a new stopping criterion and
a set of inexpensive working set selection strategies that need almost as few iterations
than the optimal working set selection strategy. For these working set strategies, we es-
tablish convergence rates that coincide with the best known rates for SVMs with offset.
We further conduct various experiments that investigate both the run time behavior
and the performed iterations of the new training algorithm. It turns out, that the
new algorithm needs significantly less iterations and run-time than standard training
algorithms for SVMs with offset.
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1 Introduction

Historically, support vector machines (SVMs) were motivated by a geometrical illustration
of their linear decision surface in the feature space. This illustration motivated the use of
an offset b that moves the decision surface from the origin. However, in recent years it
has become increasingly evident that this geometrical interpretation has serious flaws (see,
e.g., [19] for some illustrations) when considering kernels that have a large feature space
such as the Gaussian RBF kernels. In addition, the current approach (see, e.g., [20]) for
investigating the generalization performance of SVMs does not suggest that the offset offers
any improvement for such kernels. On the other hand, the SVM optimization problem
with offset imposes more restrictions on solvers than the optimization problem without
offset does. For example, the offset leads to an additional equality constraint in the dual
optimization problem, which in turn makes it necessary to update at least two dual variables
at each iteration of commonly used solvers such as sequential minimal optimization (SMO).
In addition, such solvers can only update certain pairs of dual variables, namely the ones
whose update still satisfy the equality contraint. Moreover, the offset makes it relatively
expensive to calculate the duality gap, see [3, p. 110], which may serve as a stopping criterion
for these solvers, and hence one usually considers upper bounds of this gap such as the one
from the maximal violating pair algorithm, see e.g. [14].



Despite these issues, research on algorithmic solutions has, with a few exceptions (see,
e.g., [7]), so far focused on SVM formulations with offset, see e.g. [12, 11, 13,9, 16, 5, 17, 2, 8,
6, 15, 18] and the references therein. The goal of this work is to fill this gap by developing
algorithms for SVMs without offset. As it turns out, these algorithms not only achieve
a classification accuracy that is comparable to the one for SVMs with offset, but also run
significantly faster. This improvement is made possible by a couple of new algorithmic ideas
that are not straightforward to implement for SVMs with offset. The first idea is a new
stopping criterion that is inspired by recent results on the statistical performance of SVMs,
see [20, Chapter 7.4], and that is, roughly speaking, a clipped duality gap. The second
idea is a new working set selection strategy. As mentioned above, SMO type approaches
for SVMs without offset can, in principle, update a single dual variable at each iteration.
However, our experiments show that this approach does not lead to sufficiently fast training
algorithms, and hence we will describe in detail, how an SMO type approach for two dual
variables works. Of course, such an approach requires a good working set selection strategy.
To identify one, we describe and test various strategies that try to find a pair of dual
variables whose update approximately maximizes the gain in the dual objective function.
Basically all these strategies first identify one dual variable whose update maximizes the
gain in the dual objective and then search for a second variable that matches well to the
first variable. Clearly, the first search is O(n), where n is the number of samples, while
the order for the second search will be between O(1) and O(n) depending on the particular
strategy. Interestingly, we will see that certain combinations of O(1) strategies for finding
the second variable need almost as few iterations as an O(n?) search over all pairs. In
particular, these combinations need essentially the same amount of iterations than some
natural O(n) strategies for the second dual variable. Since each iteration for the latter are
obviously more expensive, these combinations enjoy significantly shorter run times as will
be seen in the experiments.

We further establish theoretical guarantees on the number of performed iterations for
solvers using the stopping criterion above and these working set strategies. It turns out that
these guarantees coincide with the best known guarantees for solvers with offset, which can
be obtained by combining the analysis of so-called rate certifying algorithms, see [17, 8, 18],
with a recent analysis of the duality gap, see [15]. Unlike the rate certifying algorithms for
SVMs with offset, however, our algorithms not only possess these guarantees, but also run
faster than typically implemented training algorithms, as our experimental section shows.

We also consider the possibility to initialize the solver with (transformed) previous solu-
tions when working on a grid of hyper-parameters. Here it first turns out that the missing
equality constraint gives us more freedom to transform these solutions. We describe and test
several such transformations ranging from relatively simple to quite complex procedures. In
the experiments, we then see that SVMs without offset profit more from simple warm start
initializations than SVMs with offset. In addition, the more complex warm start strategies,
which cannot be directly implemented for SVMs with offset, lead to further improvements.
In particular, for datasets containing a few thousand samples, SVMs without offset profit
about twice as much from a good warm start strategy than SVMs with offset do. As a
result, our SVMs without offset are approximately 8 times faster than SVMs with offset on
these datasets, if the hyper-parameters are determined by a cross-validation approach.

This work is organized as follows: Section 2 introduces an SMO type algorithm for SVMs
without offset that performs one dual variable update per iteration. We further describe
the new stopping criterion based on a clipped duality gap as well as several warm start
strategies. Section 3 then generalizes this algorithm to handle two variables at each iter-



ation. In particular, we describe how to exactly solve the corresponding two dimensional
optimization problem. Furthermore, we present several working set selection strategies.
Section 4 contains our theoretical analysis, while the experiments can be found in Section
5. Finally, concluding remarks can be found in Section 6.

2 The Basic Algorithm: Optimizing One Coordinate

o = max{a,min{b,t}}, t € R, b > a, for the clipping
operation that clips a real number ¢t whenever it is outside the interval [a,b]. In order
to introduce support vector machines without offset term let us consider a training set
T = ((x1,91)s- -, (Tn,yn)) € (RY x {~1,1})" and a function f : X — R. Then the
empirical hinge risk of f is defined by

Throughout this paper we write [¢]

RLT sz yu wz )7

where L denotes the hinge loss L(y,t) := max{0,1 — yt}, and w; > 0 is a weight associated
to the sample (z;,y;). For example, in ordinary binary classification we have w; = 1 for all
i =1,...,n, whereas in weighted binary classification we have two real numbers wpos > 0
and wpeg > 0 such that w; = wpes if y; = 1 and w; = wneg if y; = —1. In the following we
will exclusively consider the case of weighted binary classification, which, of course, includes
the case of ordinary binary classification. Now the SVM without offset solves the problem

fra € argmin A|| £ + Rer(f), (1)
feH

where H is the reproducing kernel Hilbert space (RKHS) of a kernel k. In the following, we
always assume that k is strictly positive definite, that is, the Gram matrix (k(xi,a:j)):-fj:l
is strictly positive definite whenever the data points 1, ..., z, are mutually distinct. From
this it is easy to conclude that k(x,z) > 0 for all z € X, and hence we may additionally
assume that k is normalized, i.e., k(z,x) = 1 for all z € X. Note that polynomial kernels do
not satisfy this assumption while the Gaussian RBF kernel k(z, ') := exp(—o?|z — 2/|3)
with width parameter ¢ > 0 does. Furthermore, note that for strictly positive definite and
normalized kernels we have |k(z,2’)] = 1 if and only if 2 = 2/. For the Gaussian kernel,
this characterization is, of course, trivial.

In order to derive an algorithm that produces an appproximate solution of (1) we first

multiply the objective function in (1) by % and introduce slack variables.

argmin  Po(f,€) = *HfHHJrZC &

. (2)
s.t. & >0, 1=1,...,n,
glzl_y’&f<x’b)7 2‘217"'777‘7
where C; := w"os if y; =1 and C; := l;j\jf otherwise. Analogously to the offset case (see,
e.g., 3, p. 107f]) one can then show that the dual of this problem is
W(a) = (e.a) — 3 (o, Ko)
max a) = {e,a) — —(a, Ka
SING 2 (3)

st. 0< o <G, 1=1,...,n,



where e := (1,...,1) € R” and K is the n x n matrix with entries K;; = y;y;k(z;, z;),
i,7=1,...,n. In addition, the Karush-Kuhn-Tucker (KKT) conditions are

(yif(xi) +& — 1)y = 0, i=1,...,n,
(Ci—a;)& = 0, i=1,...,n,

and a solution o* € [0,C] :=[0,C1] x - -+ x [0,Cy,] of (3) yields a solution (f*,£*) of (2) by
setting

fo=> " yiaik(a, -
=1

and & = max{0,1 — y;f*(x;)}, i = 1,...,n. Obviously, (3) is identical to the standard
dual SVM problem besides the missing equality constraint (y,«) = 0. Now recall that this
equality constraint makes it necessary to update at least two coordinate values at a time,
while in (3) we can update single coordinates. Some ideas for such a single direction update
will be recalled in the following subsection to provide the background for working sets of
size two considered in the following section.

2.1 Working sets of size one

In order to recall (see [3, p. 131ff]) the one-dimensional update step we define

oW -
VWZ(OZ) = Dee: (Oé) =1- ZajKi,j .
i =1

Moreover, for an o = (ay,...,o,) € R® and an index i € {1,...,n} we write a\! :=
a — a,e;, where e; denotes the i-th vector of the standard basis of R"”, i.e. a\i equals « in
all coordinates other than ¢ where it equals zero. Now basic calculus together with K;; = 1
for the normalized kernels shows that

. . 1 . . . 1
a; — W(a\V + aze;) = (@V,e) + a; — 5<oN, Ka\) — ay(es, Ka\') — 55@
attains its global minimum over R at

J#i

Obviously, if of € [0, C;] the function a; — W(Oz\i + aue;) also attains its maximum over
[0,C5] at af. On the other hand, if, e.g., of > C; then a simple concavity argument
shows that the function attains its maximum over [0, C;] at C;. By this and an analogous
consideration in the case o] < 0 we hence see that the function o; — W(a\i + aje;) attains
its maximum over [0, C;] at

Al = [VW;(a) + i) . (4)

(2

The next question is in which coordinate ¢ should we perform the update. A simple and
straightforward approach (see e.g. [3, p. 132]) is to update for each coordinate i = 1,...,n
iteratively, while a more advanced idea is to choose KKT violators (see [7, Chapter 3]) for
the update, i.e., indices that, for a specified € > 0, satisfy

a; < C; and VWi(a) >e€ (5)
or a; >0 and VW;(a)< —e.



Obviously, the extreme case of this approach is to look for the indices

. € argmaX{VWi(a) TR C’i}

up
own € argmin{VW;(a):a; >0},

and to pick the index of these two candidates whose gradient has the larger absolute value.
Another idea, which is motivated by [8, 9, 17], is to choose the coordinate i* whose update
achieves the largest improvement for the objective dual value W(a). In other words, it
performs the update in the direction

i* € arg max W(a+ die;) — W(a), (6)

where §; := a'” — «; denotes the difference between the new and the old value of o;. Using
the following trivial lemma, it is easy to see that Procedure 1 solves (6).

Lemma 2.1 Ford R andi=1,...,n we have
W(a+de;)) —W(a) =06 (VW;(a) —0/2).
Proof: By the symmetry of K we find
(o, Ka) — (o + de;, K (o + de;)) = —26(a, Ke;) — 62

Combining this with (e, a + de;) — (e, a) = ¢ yields the assertion. |

Procedure 1 Calculate i* € argmax;—; ., 0; - (VW;(a) — 6;/2)
bestgain «— —1
fori=1tondo

af — [VWi(a) + ailg’
d—af —a
gain — ¢ - (VW;(a) = 6/2)
if gain > bestgain then
bestgain «— gain
i —1
end if
end for

2.2 Stopping Criteria

Several stopping criteria for the SVM with offset have been proposed and a straightforward
approach is to adapt one of these. For example, one can stop if both VWiﬁp (a) < e and
VWis (a) > —¢, ie, if the KKT conditions are satisfied up to some predefined e > 0.

Another simple idea is to use the duality gap as a stopping criterion, see e.g. [3, p. 109 &
128]. For SVMs without offset this duality gap is of the form

gap(a) = (o, Ka) — (e,a) + ) G [VWi(a)]F < e, (7)
i=1

where € > 0 does not necessarily have the same value as above.



In this work, however, we consider a little more involved stopping criterion that is based
on recent results from the statistical analysis of SVMs in [21]. Namely, it was shown in [21]
that an f* € H satisfying

MFNE +Rer((f18) < gggg/\llfll?{ + Reo(f) +e (8)

for yet another pre-defined ¢ > 0 satisfies the same oracle inequality up to 4¢ as the true
solution fr . Moreover, a more careful analysis of [21] shows that the factor 4 can be
essentially removed, so that for say € := 0.001 the learning guarantees for the approximate
solution f* are at most 0.1% worse than those for the true solution fr . In order to develop
a stopping criterion from this observation we denote the minimum of the objective function
P in (2) by Pf. Moreover, for a dual point « € [0, C] we define, as usual, a corresponding
primal function by

f = Zajyjk(xj, : )
i=1

and its corresponding slack variables by & := max{0,1 — y; f(x;)}, i = 1,...,n. Using
1—yif(z;) = VW() and || f||} = (o, Ka) as well as P, > W(a) = (e,a) — (o, Ka) /2 and

max{0,1 —y[t]L1} =1 —ylt]l, = [1 —ytf§
for all y = 41, t € R we hence see that (8) is satisfied if

S(a) = (a, Ka) — (e,a) + > G[VWi(a)} < % (9)
=1

Note that the statistical analysis of [21] also suggests that the right hand side of (7) can be
replaced by 5y, where € has the same value as in (9). Consequently, the difference between
these two stopping criteria is the fact that (9) considers clipped slack variables which may
be substantially smaller than the unclipped slack variables used in (7). Moreover, unlike
the duality gap stopping criterion for SVMs with offset, see [3, p. 109f], both (7) and (9)
are directly computable since they do not require the offset.

To efficiently compute S(«) we first observe that the first two terms of the updated
S(a+ de;) can be easily computed from the first two terms of S(«a). Indeed, if we write

T(a) = (a,Ka)— (e a)
E(a) = Z Ci[VWi(a)]5
i=1

then we have S(a) = T'(a) + E(a), and the calculations in the proof of Lemma 2.1 imme-
diately show
T(a+ 6e;) =T(a) — 6(2VWi(a) — 1= 6).

Now it is easy to derive an O(n) procedure that updates VW («) and calculates S(«).
Procedure 2 provides pseudocode for this task.

Now the basic idea of the 1D-SVM described in Algorithm 1 is to repeatedly look for the
best direction i* and update in this direction until the stopping criterion (9) is satisfied. A
closer look at this algorithm shows that it contains one piece that has not been discussed
so far, namely the initialization of the solver. This initialization will be considered in the
following subsection.



Procedure 2 Update VW («) in direction ¢ by ¢ and calculate S(«)
T(a) « T(a) — §(2VW;(a) — 1 —6)
E(a) <0
for j =1tondo
VWj (Oé) — VW]'(OZ) — 5Kz’,j
E(a) « E(a) + C; - [VWi(a)]3
end for
S(a) — T(a) + E(«)

Algorithm 1 1D-SVM solver

initialize o, VW (), T'(«), and S(«) by one of the Procedures from Subsection 2.3
while S(a) > 55 do

i* — argmax;—1_, W(a+ die;) — W(a)

0 «— [VWZ* (04) + Otz*]g — Qj*

s — [VWis (@) + a;+]§

use Procedure 2 to update V¥ («) in direction ¢* by ¢ and calculate S(«)
end while

2.3 Initialization

We also have to decide how to initialize a. Of course, there exists various approaches for
this task, and in the following, we describe a few methods we have tested in this work.

10 & WO0. Cold start with zeros

Obviously, the most simple initialization is the cold start o «+ 0. Procedure 3 provides the
pseudocode for this approach, which in the following we call 10 or WO.

Procedure 3 Initialize by «; < 0 and compute VW (), S(«), and T'(«).
T(a) <0
S(a) <0
fori=1ton do

Qy 0

VWi(a) 1

S(a) «— S(a) +C;
end for

11 & W1. Cold start with kernel rule

Another simple cold start is to initialize with «; « Cj for all ¢ = 1,...,n. Procedure 4
provides the pseudocode for this approach. In the following, we call this approach I1 or W1.

Obviously, Procedure 3 is of order O(n), whereas Procedure 4 is of order O(n?), and hence
the latter seems to be prohibitive. On the other hand, Procedure 4 basically initializes with
a classical kernel rule, see [4, Chapter 10], and hence its initial training error may be
smaller than that of Procedure 4. This in turn might lead to a smaller initial stopping
criterion value S(«) and hence to less iterations of the solver. Of course, there is much
room for speculation, and hence we will investigate the efficiency of both approaches in the



Procedure 4 Initialize by «; < C; and compute VIV («), S(a), and T'(«).
T(a) 0
E(a) <0
fori=1ton do
Q <— Cz
VWi(a) 1
for j=1ton do
VWl(Oé) — VWZ(Oé) - Cj . KiJ
end for
T(a) — T(a) — C; - VIW;(v)
E(a) « E(a) + C; - [VW;(a))2
end for
S(a) « T(a) + E(a)

experiments. However, it is worth noting that unlike Procedure 3, Procedure 4 cannot be
directly implemented for SVMs with offsets. In addition, Procedure 4 requires the entire
kernel matrix to be computed, and hence it may actually be prohibitive if this matrix does
not fit into memory.

W2. Warm start by recycling old solution

Besides the cold starts mentioned above, there are also a couple of simple warm starts
possible. In order to explain these let us recall that often the hyper-parameter A is chosen
by a search over a grid A = {\1,..., \,,} of candidate values. Let us assume that these
values are ordered in the form Ay > --- > A, and that we train the SVM in the order
A, ..., Am. Then the resulting n-dimensional vectors CV), ..., C(™) defined by

o) . {;U,\TZ ify; =1

Wneg
2\jn

’ if g = —1

have the property Ci(j) < CZ-(]H) forallj=1,....m—1andi=1,...,n. For CV) we can
then initialize with one of the above cold starts. Now observe that for j > 2 the approximate
solution a* obtained by training with €4 := CU—Y js feasible for C™V = CU), j.e.
a* € [0,C™V]. Consequently, for j > 2 we can either initialize with a cold start, or with
the warm start o < a*. Obviously, in this case we can also recycle VIW (o) and T'(«). In

addition, the ratio
Cincw B )\j—l

cod

is independent of i and hence this warm start can be very easily implemented as Procedure
5 shows.

Procedure 5 Initialize by a; < o and compute VW («), S(a), and T'(«).
§(a) = T(a") + G+ (S(a") = T(a))

old
Cl




W4. Warm start by partially expanding and partially recycling old solution

Apart from the simple warm start above there is another conceptionally simple warm start
for expanding box constraints. Namely, if o* denotes an approximate solution to C°4 and
C°d < O™V this warm start initializes by a; « of if of < Cfld and by o; < C7V if
of = C’fld. The idea behind this warm start is that bounded support vectors, i.e., vectors
in
bSV i={j:a; = C;’ld}

may have the tendency to become larger if the box contraint is loosened, while unbounded
support vectors, i.e., vectors in

uSV :={j:0<aj < C;’ld}

may not have this tendency.

The basic idea of an efficient implementation of this warm start method is to avoid
calculating the gradient from scratch by recycling parts of the gradient from C°4. To be
more precise, observe that, for fixed 4, the sum ) jeusv o} K; ; remains unchanged by the
described warm start, while >, ¢ o} K ; is simply multiplied by C7°"/ C9. Recall that
the latter ratio is independent of ¢, and consequently we can update the gradients by either

Procedure 6 Initialize bounded SVs by «; « C}**V while keeping the rest unchanged and
compute VIV (a), S(a), and T'(«).
T(a) <0
E(a) —0
for i =1ton do
if a; = C’fld then
o «— CF°Y
end if
end for
if 2-#uSV < #0SV then
fori=1tondo . .
VWi(a) — S - VWila) + (1= Gar) (1= Syeusy 05Ki)
T(a) — T(a) — a; - VW;(a)
E(a) « E(a) + CP* - [VWi(a)[3
end for
else
fori=1ton do
VWi(a) — VWi(a) + (CP' = CrY) 3 iepsv Kig
T(a) «— T(a) — a; - VW;(a)
E(a) « E(a) + O} - [VWi()]j
end for
end if
S(a) — T(a) + E(a)

Cnew . . .
VW1<O¢) —1- Clold (1 — VWZ(CV ) - Z ijK@j) - Z OéjKi,j
1 jEuSV jEUSV



foralli=1,...,n, or

VWi(e) — VWi(a) + (CPM = CP*) > Kij, i=1,....n,
JELSV

where in the first formula we used

1-VWi(e*) = Y oKij= Y oiK;. (10)
jeuSv FEBSV

Note that the first method implicitly recycles 3 ;o1 @7 K;; by (10), while the second
method implicitly recycles > jeusv a; K ;. Obviously, depending on the number of bounded
and unbounded support vectors either the first or the second method is more efficient, and
hence should be chosen. We decided to pick the first or second method depending on whether
2-#uSV < #bSV or not. This decision was based on counts of the involved floating point
operations and the fact that in all our experiments we stored the entire kernel matrix in
the memory. However note that both methods require to access some rows of the kernel
matrix, and hence there is most likely a more efficient cut-off if only parts of the kernel
matrix are stored in memory by caching. Since in general, the costs of computing a row
of the kernel matrix depends on data set specific features, such as its dimensionality when
using Gaussian kernels, there does not seem to exists a simple rule of thumb in this case,
though. Consequently, we decided not to analyze this case carefully. Procedure 6 displays
the corresponding pseudocode for this warm start, which we call W4. It is not hard to see,
that in the worst case Procedure 6 is of order O(n?), while in the best case it is only of order
O(n). Since the average case cannot be easily analyzed, we will experimentally evaluate
whether this warm start is efficient or not.

W6. Warm start by partially shrinking and partially recycling old solution

Let us now assume that we run through the A-grid in reverse order. Then we have
C°d > O™V and hence we cannot immediately recycle the old approximate solution o*.
Nonetheless, there is a certain analogue to Procedure 6 possible. Indeed, we can initialize
by a; «— o if of < C"V and by «; <+ C"V if o > C™*V. Again, the corresponding warm
start needs some work to find an efficient implementation that recycles suitable parts of the
gradient. In order to explain such an implementation we split the set uSV into

nuSV = {j:0<a; <Cj™}
nbSV = {j: O}V <of <C9},

where we note that we use a slight abuse of the letters u and b in this notation. Now note
that the initialization above multiplies all oz;f € bSV by the factor CTV/ Cfld, while it keeps
all Oz; € nuSV unchanged. Obviously, both update rules make it possible to recycle parts of
the gradient. Unfortunately, however, for a; € nbSV, the situation is more complicated and
no simple recycling is possible. Procedure 7, which displays the corresponding pseudocode
is thus a little more complicated than Procedure 6. Note that all remarks concerning the
computational requirements of Procedure 6 also apply to Procedure 7, and the same holds
true for the rule that decides which part of the gradient is recycled. In the following we call
this approach displayed in Procedure 7, W6.

10



Procedure 7 Initialize directions that violate the new box constrained by a; « C7*°V while
keeping the rest unchanged and compute VW (a), S(a), and T'(«).

for i =1ton do
if o; > C7°Y then
Q <— Cinew
end if
end for
T(a) <0
E(a) <0
if #nuSV < #bSV then
for i =1 ton do -
VWi(a) 1 — CCEW (1= VWi(@) = Yicnusy @ Kij = Y ienpsy @ Kij)
VWi(a) « VWi(a) = X ienusv @ Kij — 2 jennsv CF Kiyj
T(a) — T(a) — a; - VW ()
E(a) « E(a) + CPV - [VWi(a)]3
end for
else
fori=1ton do
VWi(a) — VWi(a) + 3y (O — CFV) Ky 5
VWi(a) « VWi(a) + X jenpsy (@ — CFV)Ki
T(a) — T(a) — oy - VW;(v)
E(a) « E(a) + Cp - [VWi(a)]j
end for
end if
S(a) « T(a) + E(a)

W3 & W5. Warm start by scaling old solution

Finally, there is an easy warm start option that works regardless of the direction we run
through the A-grid. Indeed, we can always initialize by «; « af -CTV /C9'4. The Procedure
8 shows the corresponding O(n) pseudocode. Depending on whether C9'4 < OV or O9'4 >
CT®V we call this approach W3 or W5, respectively.

Procedure 8 Initialize by o; « af - CTV /!4 and compute VW (a), S(a), and T'(a).
T(a) <0
E(a) 0
for : =1 ton do
Cyew ™
QG = e O
VWi(a) 1= G- (1 = VWi()
T(a) — T(a) — a; - VW;()
E(a) < E(a) + CF - [VWi(@)[§
end for
S(@) « T(a) + E(a)

11



3 Working sets of size two

So far, our algorithm performs an update in one coordinate per iteration. Let us now
consider an algorithm which performs an update in two coordinates per iteration. Let us
first present a simple lemma that computes the gain of a 2-dimensional update.

Lemma 3.1 For d;,0; € R and i,j =1,...,n we have

W(CY + (52'67; + 5]'6]') — W(a) = 52 . (VWZ(O[) - 51/2) + 5j . (VW](CY) - 5]/2) - 5i6jKi,j .
Proof: Applying Lemma 2.1 twice we find the assertion by VW;(a + d;e;) = VIW;(a) —
5iKi,j- |
3.1 Solving the two dimensional problem exactly

In order to describe an algorithm that updates two variables at each iteration we first have
to investigate how the two-variable update looks like in detail. To this end, we fix two
coordinates i,j € {1,...,n} with i # j and consider the function

(&, &) = Wi j (G, &5) == W(a\™ + dse; + Gje;)

where o\ = o — aje; — ajej is a fixed vector whose i-th and j-th coordinates equal zero.
Simple calculation then shows

Wij(aia;) = (e, o\ @ + aj — 5(04\”], Ko\ — ayle;, KWy — ajle;, Ka\i)
L. o~ ~2
_5(0‘1' + QOéiOéjKi,j + Oéj) R
where we used K;; = K;; = 1. Consequently, the partial derivatives are given by

OW; (6, é;)
0é;

OWi (6, &)
0,

= 1- <6¢,K04\i’j> — 5(1 — dei,j
= 1- <€j,KOA\i’j> — &j — diKZ‘J .

In order to derive the maximum of Wj ; on [0, C;] x [0, C;] from these derivatives, we need
to consider three different cases.

The case K;; =1
By setting the above derivatives to zero, we obtain the following system of linear equations
o + a;- = 1- <ei,Koz\i’j>
aj +aof = 1- <ej,Ka\i’j)
that have to be satisfied for all global maxima (o], ) € R? of W; j. Now recall that we
assumed that the kernel % is strictly positive definite, and therefore we see that K;; = 1
implies z; = z;, and hence y; = y;. From this we conclude K, = Kj, for all £ =1,...,n,

and thus we obtain 1 — (g;, Ka\#/) =1 — (e;, Ka\"7). Consequently, W; ; attains its global
maximum at every point of the affine subspace

{(of,0f)raf +af=1— (es, Ka\b)} (11)
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which is a translated version of the anti-diagonal subspace {(a, —«) : a € R}.
Now recall that y; = y; implies C; = C}, and hence we are actually interested in finding
a pair (&, &;) that maximizes W; ; on the square [0, C;]2. If 1 — (e;, Ka\¥7) € [0,2C;], it is
easy to see that the subspace (11) intersects the square, and hence W; ; attains the desired
maximum at every element in this intersection. In particular, (o], o), where
. 1= (e, Ka\id)
Gm T
is such a pair. Let us now assume that 1 — (e;, Ka\"/) > 2C;. Then the subspace (11)
lies “above” the square [0, 01]2, and since W; ; is concave, W ; then attains its maximum
over [0,C;]? at a point of the set of edges {C;} x [0,C;] U [0,C;] x {C;}. Let us fix a pair
(G4, a5) € {C;} x [0,C;]. Then we have
OW: (6. 6o o ~ - T ~
z’ii?(d‘“ ]) =1- <€j,KOé\Z’J> — Oéj — OziKm' =1- <€j,KOé\Z’J> — Oéj - Cz > O,
j
and hence W; ; attains its maximum over {C;} x [0, C;] at the corner (C;, C;). Interchanging
the roles of i and j we can thus conclude that W; ; attains its maximum over [0,C;]? at
(C;,Cy). Since we can analogously show that, for 1 — (e;, Ka\®/) < 0, the function Wi
attains its maximum over [0, C;]? at (0,0), we finally find the update rule

new new . 1-— <6i, Ka\i’j> Ci _ VWZ‘(OJ) + a; + a; Ci
o =af = | = .
2 0 2 0
The case K;; = —1
In this case, we have x; = x;, and hence y; = —y;. From this we conclude K;, = —Kj,
for all £ = 1,...,n, and thus we obtain (e;, Ka\"/) = —(ej,Ka\i’j>. Consequently, the

derivatives above reduce to
oW, j(as, &)
o0&,
oW, j(a, &)
0d;

= 1- <ei,Ka\i’j) — +dj
= 1+ <€Z',K06\i’j> —C~kj + a;,

and from this it is easy to conclude that W; ; does not have a global maximum. However,
a closer inspection of W ; yields the formula

. 1 .. . 1
Wi (@i, 65) = (e, 0\) + & + a; — §<a\”» Ka\") — (& — d;){e;, Ka\"/) - 5 (@i — a;)",

and hence we see that, for fixed 8 € R, we have

- 1 .. - o 1
Wij(@i, @ + B) = (e,0\) + 281 + 5 = (o', Ka\W) + Ble;, Ka\W) — 2.
In other words, Wj ; is a affine linear function with positive slope on the affine supspaces

and therefore W ; attains its maximum over [0, Cy] x [0, C;] at a point from the set of edges
{C;} x [0,C;] U [0,C;] x {C;}. Let us first consider a pair (&;,a;) € {C;} x [0,C}]. Then
we have oW (s, )
i,j (O, O ig\ o~

]8@. =1 — (e, Ka\") —d; + Ci,
J

13



and hence W ; attains its maximum over {C;} x [0,C}] at (Cj, ), where
f = [1— (e, Ka\W) + CJ§7 = [VW;(a) + aj — a; + Cilg -

Moreover, for §; := C; — a; and ¢§; := a;-‘ — a; we obtain the gain of this update by Lemma
3.1. Analogously, we can show that W; ; attains its maximum over [0, C;] x {C;} at (o, C)),
where

af = [1 = (e, Ka\") + CjJ§" = [VWi(@) + a; — a; + CjIg" .
Again, the gain of the corresponding update can be computed by Lemma 3.1, and by
comparing both gains we can then decide which two-dimensional update yields the larger
gain. The corresponding update is chosen in the algorithm.

The case K;; # +1

To solve the two dimensional problem in this case we fix an o € R" and write

v o= 1— <ei,KOz\i’j> =1- Z oK = VWi(a) + a; + o K
bF£i,j

vi = 1-— <ej,K04\i’j> =1- Z Ongjyg = VWj(Oé) + o + o K
lF£i,j

Using the derivatives of W; ; it is then easy to see that W; ; attains its global maximum at
each point (o, ozj-) that satisfies v; = o + oz}'fKi,j and v; = oz;'f + oj K; ;. Simple algebraic
transformations now show

ap =170y 2 BT
1=K, 1= Kj;
and by re-substituting the definition of +; and 7; we hence obtain

VW;(a)=VW;(a)K;

o = o+

7 1—-K2.
o 4 VWj(a)_vwi(a)KiJ (12)
Qa; = 1-K2

for the uniquely determined point at which W;; attains its global maximum. Now if
(a7, aj) € [0,C4] x [0,C;] we can simply update by (af“’,aj®") = (af,aj). However,
if (of, ) € [0,C4] x [0,C;] we have to make further calculations. For example, for o] > C;
and o € [0,Cj], the function W;; attains its maximum over [0, C;] x [0,C}] at a point of
the line {C;} x [0, C;] by the concavity of W; ;. Consequently, in this case the update is

Lale?) == (G, [VWj () + (a; — C) Ky + ajl)

new

(o

i.e., we first update the i coordinate, which leads to the temporary gradient
VWj(a) + (o — Ci)Ki,j ,

and then perform a one-dimensional optimization over the j coordinate. The remaining
three cases where exactly one direction of (o, a;) violates the box constraint can be handled
analogously. Finally, let us consider the cases, where both coordinates violate the constraint,
e.g., o > C; and a; > Cj. In this case, the concavity of W;; shows that W;; attains its
maximum over [0, C;] x [0, C}] at a point of the set {C;} x[0, C;]U[0, C;] x{C};}. Consequently,
we have to temporarily perform the above one-dimensional optimization twice, namely one
over the i coordinate and one over the j coordinate. By computing the resulting gain of
W for both optimizations we then can decide which optimization we have to choose for the

update. Again, the remaining three cases can be handled analogously.
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3.2 Selecting a working set of size two

Obviously, the 2D-SVM-solver displayed in Algorithm 2 is conceptionally very similar to the
1D-SVM-solver presented in Algorithm 1. However, so far we have not addressed how to
choose the directions ¢* and j* in which the 2D-SVM-solver performs an update. Several
possibilities exists for this issue, and we discuss a few of them in the following.

Algorithm 2 2D-SVM solver

initialize (o, VW (a), T(c), S(cv))

while S(a) > 55 do
select directions ¢* and j*
update « in the directions ¢* and j*
update VIV («) in the directions ¢* and j* and calculate T'(«) and E(c)
S(a) — T(a) + E(«)

end while

WSS 0. Choose the pair of directions with maximal gain

Given a pair of directions (4, 7), Lemma 3.1 can be used to compute the gain of W resulting
from the exact two dimensional optimization described in Subsection 3.1. Now one could
consider all pairs of directions and choose the one with the largest gain. Of course, in
practice this approach is prohibitive since the search is an O(n?) operation, which has to be
performed in each iteration. Nonetheless, this approach intuitively yields the optimal pair
of directions, and all subset selection strategies developed below can be interpreted as low
cost approximations to this approach. Consequently, we tested it to get a baseline number
of iterations, to which all other subset selection strategies are compared to.

WSS 1. Optimal 1D-direction and previously found 1D-direction

A careful analysis of the behavior of the 1D-SVM-solver shows that it often comes into
a regime in which it picks alternating indices ¢* and j* for a while. In other words, it
tries to approximately solve the 2D-problem in the directions ¢* and j*. In order to avoid
this cost-intensive alternating we can look for the best 1D-direction ¢* and then perform
a 2D-update over i* and the optimal 1D-direction i}, chosen in the previous iteration.
Clearly, the advantage of this approach is that it preserves the low-cost search from the
1D-SVM-solver. On the downside, however, it may not reduce the number of iterations very
effectively.

WSS 2. Two optimal 1D-directions from separate subsets

Another simple way to preserve the low cost search from the 1D-SVM-solver is to split the
index set {1,...,n} into two parts {1,...,n/2} and {n/2 + 1,...,n} and search for the
optimal 1D-directions over these two parts. In other words, we can choose the directions i*
and j* by

" c w de;) — W
i arggg/xQ (o + d;€;) ()

Jj* € argmax W(a+ die;) — W(a),
i>n/2
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where §; is defined as in the 1D-SVM-solver. Clearly, this approach preserves the low cost
search from the 1D-SVM-solver, but again it is not clear whether it reduces the number of
iterations very effectively.

WSS 4. Optimal 1D-direction and a direction of a nearby sample

Yet another approach to preserve the low cost search from the 1D-SVM-solver is to first
look for the optimal 1D-direction ¢*, and then, in a second step, to pick a direction j* such
that ;- is close to x;+ with respect to the metric induced by the kernel. The rational
behind this idea is that if one uses the Gaussian RBF kernel and optimizes in direction
1", the gradients of samples close to z;+ are most affected by the update in direction 7*
because of the bell shape of the Gaussian. If these gradients were close to zero before the
update, they are thus most likely no longer close to zero after the update. Consequently, the
corresponding directions will have a good chance of being chosen in a subsequent iteration.
In our experiments, we considered the k-nearest neighbors of z}, where k = 10, and picked
the neighbor z ;= for which the 2D-update in the directions (i*, j*) yielded the largest gain.
Note that, as soon as the direction i* is found, it is clear that one needs to access the
1*-th kernel row for updating the gradient subsequently, and hence finding the k-nearest
neighbors is relatively inexpensive. Moreover, computing the 2D-gain over k candidates is
also relatively inexpensive, if k£ remains small. Nonetheless, initial experiments suggested
that searching over the k-nearest neighbors only makes sense if the solver mainly updates
inner support vectors, i.e., directions ¢ with 0 < «a; < C;. Consequently, we implemented a
Boolean flag that was recomputed every 10 iterations. In this re-computation, the flag was
set to true, if and only if in at least 5 of the previous 10 iterations the picked directions ¢*
and j* both were inner support vectors. We then considered the k-nearest neighbors only
if this Boolean flag was set, while in the other case we applied the working set selection
strategy described in WSS 1.

WSS x. Combinations of optimal 1D-direction-based approaches

It is easy to see that one can combine the three methods that are based on finding the
optimal 1D-direction. For example, in each iteration one can combine WSS 1 and WSS 2 by
computing the 2D-gain of both methods and pick the one with the larger gain. Obviously,
this still preserves the low cost search from the 1D-SVM-solver and only adds little cost for
computing the 2D-gain for the two candidate pairs. Similarly, all three methods can be
combined. Combinations of these methods are called WSS x, where x is the sum of the
combined methods. For example, by combining WSS 1, WSS 2, and WSS 4 we obtain WSS
7, and by combining WSS 1, WSS 2, WSS 4 with WSS 512 below, we obtain WSS 519 . In the
following, we keep this binary numbering system which makes it possible to easily describe
arbitrary combinations of basic working set selection strategies.

WSS 8. Optimal 1D-direction and optimal one-step-ahead 1D-direction

Another way to modify the 1D-SVM subset selection strategy to two directions is to look for
the optimal 1D-direction ¢* first, and then look for the optimal 1D-direction j* that would
be found after having updated in direction ¢*. Obviously, this strategy, which we call WSS
8, is closely related to WSS 1 in that the update and search routines are partially permuted.
However, it has a higher cost for the search part per iteration, while intuitively it should
reduce the number of iterations.
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WSS 16. Maximal violating pair

A completely different subset selection strategy is based on the maximal violating pair
idea. For the SVM without offset, this means that the pair (i*,j*) is chosen that violates
(5) most. In other words, for both index sets {i : o < Cj} and {i : o > 0} the two
indices with the largest, respectively smallest, gradients are picked, and the final pair (i*, j*)
consists of the indices that have the gradient with the largest absolute value among the four
candidate directions. In order to implement this working set selection strategy efficiently,
the sets {i : a; < C’i} and {i : a; > O} should be kept in memory and updated in every
iteration. This may add some cost per iteration compared to the previous working set
selection strategies, while it is unclear how the number of iterations behave compared to
these strategies.

WSS 32. Optimal 1D-direction and corresponding optimal 2D-direction

None of the methods introduced so far try to seriously approximate the 2D subset selection
strategy WSS 0, which intuitively picks the best possible pair of indices. The first method
that seriously tries such an approximation is WSS 32, which first picks the optimal 1D-
direction ¢*, and then searches for the j* € {1,...,n} such that (:*,j*) maximizes the
corresponding 2D-gain. Obviously, the cost for this search method is significantly higher
than those of WSS 1 to WSS 7, but it is still O(n). On the other hand, the better choice of
(7*, 7%) may substantially reduce the number of iterations of the 2D-SVM-solver, and hence
it is not a-priori clear how WSS 32 performs compared to the earlier methods.

WSS 64. Optimal 1D-direction and random optimal 2D-direction

Instead of considering all pairs (i*,7), j = 1,...,n, as WSS 32 does, it may suffice to reduce
the search over the pairs (i*,7), j € J, where J C {1,...,n} is a random subset. In our
experiments we considered the case #.J = n/5.

WSS 128. Optimal 1D-direction and approximately optimal 2D-direction

One of the disadvantages of WSS 32 is that computing the 2D-gain is quite expensive due to
the relatively large number of branches and floating point operations. One way to address
this issue is to compute the 2D-gain in WSS 32 only approximately. WSS 128 uses the
following approximation: for indices ¢ and j with K;; = £1 it computes the exact gain,
while for the other pairs it first computes o and a;‘f by (12), and then applies the simple
clipping operation

o = o]

ai® =[]
For these new a’s, WSS 128 finally computes the gain by Lemma 3.1. Clearly, this gain is in
general less than the exact gain, but it still may be a good approximation. In particular, if
both o] and a; satisfy the box constraints, then the approximation is actually exact. On
the other hand, the approximation is clearly less expensive, but we expect more iterations

compared to WSS 32.
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WSS 256. Optimal random 2D-directions

Another way to approximate WSS 0 is to consider k random pairs (i, 7), and pick the pair
(7%, j) that yields the largest exact 2D-gain among them. In WSS 256 we followed this idea
for k :=n.

WSS 512. Optimal 1D-direction and optimal 2D-direction over inner SVs

Although the approximate computation of the 2D-gain in WSS 128 is cheaper than the exact
computation in WSS 32, it may still be too expensive. One way to further decrease these
costs is based on the observation that the 2D-gain is given by

1 [VIW()? + [VWj()]? = 2V Wi(a) V() Ko
2 1 - K7,

if K;; # 1 and o; and o} computed by (12) satisfy the box constraints. WSS 512 uses this
simplified formula in the following way. Again, it first searches for the optimal 1D-direction
1*. If ay= is an inner support vector, see WSS 4 for a definition, and the Boolean flag of WSS
4 is set, WSS 512 searches for the direction

J* E{j50<a]’ < Cj and Ki*J?é:l:l}

that optimizes the above formula of the 2D-gain for fixed i := ¢*. Since in some iterations
WSS 512 reduces to the 1D-SVM-solver we further considered some combinations with WSS 3,
and WSS 7 in our experiments. Following the naming convention of combinations mentioned
earlier, these strategies are called WSS 515 and WSS 519.

WSS 1024. Optimal 1D-direction and random 2D-direction over inner SVs

The next subset selection strategy, WSS 1024, is quite similar to WSS 512, except that it
does not consider all inner support vectors in the search for j*, but only k random inner
support vectors. We set the routine up so that k equaled 20% of the current number of inner
support vectors. In addition, we initiated the search whenever «;+ was an inner support
vector, i.e., the search was initiated independently of the Boolean flag of WSS 4. Again, in
some iterations WSS 1024 reduces to the 1D-SVM-solver, and hence we further considered
some combinations with WSS 1, WSS 2, and WSS 4, where again the naming convention
above was used.

WSS 2048. Add random optimal 2D-directions over inner SVs

The final subset selection strategy, WSS 2048, is actually not a subset selection strategy of its
own, but only a strategy that works in combination with others. Once one of the previous
subset selection strategies has picked a pair (i*,j*) and a4+ has turned out to be an inner
support vector, WSS 2048 considers k random pairs of inner support vectors, and picks the
pair (i**,j**) that has largest approximate gain, where the approximation was computed
as in WSS 512. Then the exact gain of (i*,j*) and (i**, 7**) is computed and the pair with
the larger exact gain was chosen. We considered this method in combination with WSS 1,

WSS 2, and WSS 4, where again the naming convention above was used.
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4 Convergence Analysis

In this section we establish an upper bound on the number of iterations for both the 1D-
SVM and the 2D-SVM. Our approach is heavily based on ideas developed for the analysis of
rate-certifying decomposition algorithms, see e.g., [9, 17, 8, 18]. In particular, we need the
o-functional, which, for a € [0,C] = [0,C}] x --- x [0,C,] and I C {1,...,n}, is defined by

o(all):= sup (VW(a),a—a).
a€[0,C]
&= Vil
Since our algorithms are based on gain optimization rather than rate certification, we further
need the y-functional
v(all)= sup W(a)-W(a),
a€glo,C]
&= Vil
which expresses the gain in the dual objective function resulting from an optimization over
the directions contained in I. To simplify notations, we write o(«ali) := o(«|{i}) and
~v(ali) := y(a|{i}). Note that we have

o(ali) = s%pc ](5@ — ;) VWi(a),
a;€[0,0;

while v(«|i) expresses the gain
W(a+ (" — a;)e;) — W(a)

of the 1D-update in direction ¢, where o] is defined by (4). In addition, vy(«|{7,j}) is
the gain obtained by the update discussed in Subsection 3.1. Moreover, for I = {1,...,n}
we write o(a) = o(a|l) and y(a) := v(«|l), respectively. Note that both o and ~ are
monotonic in I, i.e., for I C J we have o(a|l) < o(a|J) and y(a|I) < v(a|J). Finally, we
need the obvious relation

V(@) =W(a") - W(a),

where we recall from Section 2 that a* € [0, C] denotes a solution of the dual problem (3).
In other words, vy(«) expresses the dual sub-optimality of «.

Let us now begin our analysis by presenting two lemmata that establish relationships
between these quantities.

Lemma 4.1 For all a € [0,C] we have

n

> o(ali) = o(a) = gap(e)

=1

where gap(«) denotes the duality gap defined in (7). In particular, there exists an index
i* € {1,...,n} such that
o(ali*) >n"to(a).

This lemma can be easily derived from results in [15] and [18]. However, in the case of
SVMs without offset, its proof is very elementary and hence we present it here.
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Proof: For i € {1,...,n} it is easy to see that the supremum used to define o(ali) is
attained at

_ CZ if VWz(CM) Z 0
Q= ) (13)
0 if VI¥Vi(a) <0
Moreover, the vector & := (@q,...,ay) € [0,C] realizes the supremum defining o(«), and

hence we obtain
zn: o(ali) = in(a), (@i — as)ei) = (VW (a),a — a) = o(a).
Furthermore,z :v;e have -
o(a) = (VW(a),a—a) = (a,Ka)—(e,a)+ ia - VWi(a)

= {(a,Ka)— (e,a) + Z Ci [VWi(a)]g
i=1

and hence we have shown o(«) = gap(a). The last assertion is a trivial consequence of the
first assertion. ]

The second lemma relates o(«|l) to the gain y(«|l). For its formulation we need the
quantity Bpax := max;—1,._n Cj.

Lemma 4.2 For all a € [0,C] and I C {1,...,n} we have

o(a|l) o(all)
O'(OZ|I) > ’Y(a|‘[) 2 2 mln{l |I’23max},

where |I| denotes the cardinality of I.

In a slightly different form, this lemma has been established in, e.g., [8], and it was
somewhat implicitly used in [18]. Again, we present its proof for the sake of completeness.

Proof: Let a; be defined by (13) and d := ), (& — a5)e;. For A € [0,1], we then have
a+ M € [0,C], and a calculation analogous to the one in the proof of Lemma 2.1 yields
NI B o
v(all) > W(a+ Ad) = W(a) = X(VW(a),d) — = d Kd) > Mo(alI) - —
Now the right hand side is maximized at

e it o(al1) > | B,
T BAealD it o(all) < [P B

max

In the case o(a|l) > |I|?B2,, we hence find

12B I

while in the other case o(a|l) < |I|2B2,,, we obtain

o*(a|])

I SOy -
Wl = 3tpese,,
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Combining all estimates we then obtain the inequality on the right hand side.

To show the inequality on the left hand side we fix an & € [0, C] such that &; = «; for all
i & I. Then we have

W(a) —W(a) =(VIW(a),a —a) — %(d —a, K(a—a)) <(VW(a),a—a) <o(a|l),

and by maximizing the left hand side of this inequality over & we find y(a|l) < o(a|l). W

With these preparations we can now present a preliminary result on iterative algorithms
that have a certain control of their gain.

Proposition 4.3 Let o9, o), ... ¢ [0,C] be a sequence of feasible vectors that satisfies
W (@) =W () > 5(aV)i}) £>0, (14)

where for each £ the index iy € {1,...,n} is the one described in Lemma 4.1, that is, it
satisfies o(a(P)|if) > n~to(al¥)). Then for all £ > 1 we have

1 ’j/(oz(z))

max

Moreover, for all e > 0 and all £ > {. we have v(a¥)) < &, where

b = F”QB‘%“W + max{O, [inn W(a) _EW(O‘(O))W } .

€

Proof: By Lemmas 4.2 and 4.1 we find

1(a) =@ ) = W (@)~ W(a®) > (i)
0| 0 |*
> S a1, 2

[V
2
Q
=
=
=
—N
\.)—‘
Q2
8
)
——

(A4
=
2
)

=

=

—

\l—‘
=
2
)
——

From this we easily obtain the first assertion.

The second assertion has already been shown in the second part of the proof of the first
assertion of [18, Theorem 4], which can be found on the pages 312 and 313 of [18]. |

Note that 1/n-rate certifying algorithms considered in [18] clearly satisfy assumption (14).
Moreover, Proposition 4.3 can also be applied to the 1D-SVM and 2D-SVM:

Theorem 4.4 Consider the 1D-SVM described in Algorithm 1 or a 2D-SVM in the sense of
Algorithm 2 that uses a working set selection strateqy whose gain at each iteration is not
less than that of the 1D-SVM. Furthermore, assume that max{wneg, Wpos} < 1. Then for all
€e>0,n>1, and all A > 0 these algorithms terminate after at most

scmmtron] o [ 20 )
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iterations. In particular, in the most likely scenario 2Ae < 1 these algorithms do not need
more iterations than

[)\2162—‘ + max{O, {271 In 2(W(a) ;W(a(o)))w } .

Proof: The 1D-SVM chooses at each iteration £ a direction 7; that maximizes the 1D-gain
v(a9i). Consequently, we have

W (V) =W (al) = 5(al)if) = (W),

where i} is the direction described in Lemma 4.1. In other words, (14) is satisfied for this
algorithm, and from this it is not hard to see that the considered 2D-SVM’s also satisfy
assumption (14). Let us now define

o . o
h(o) == 2m1n{1, 71232} , o >0.

max
For ¢ := h(5y) Proposition 4.3 together with Lemma 4.2 then shows that

h(i)zgzymm)zhwmm»

2\

for all £ > £. and hence we obtain S(a'¥)) < gap(al?) = g(a®) < o5 by the monotonicity
of the function A. Using Bpax < ﬁ we then obtain the assertion by simple algebraic
transformations. |

Note that the working set selection strategies WSS 1, WSS 2, WSS 4, WSS 8, WSS 32, WSS
64, WSS 128, WSS 512, and WSS 1024, satisfy the assumptions of Theorem 4.4. Moreover, the
same is true for all combinations of working set selection strategies that include at least one
of the strategies listed. Finally, note that the upper bound established in Proposition 4.3
coincide (modulo constants that come from different working set sizes) with the bounds for
rate certifying algorithms presented in [17, 8, 18]. Moreover, the step from dual e-optimality
to primal e-optimality considered in the proof of Theorem 4.4 coincides with the analysis
[15] for SVMs with offset. Consequently, the bound presented in Theorem 4.4 equals the
best known guarantees for solvers for SVMs with offset.

5 Experiments

The described 1D-SVM-solver and 2D-SVM-solver enjoy nice theoretical properties with re-
spect to both generalization performance and required training time. However, it is unclear
how tight these bounds are, so it remains unclear whether the proposed SVMs also perform
well in practice. Therefore, we performed several experiments that address the following
questions:

i) Which subset selection strategies lead to the smallest number of iterations or the
shortest runtime? How many more iterations than WSS 0 do these strategies perform?

i) How many less iterations needs the stopping criterion (9) compared to standard du-
ality gap (7) and is there also an advantage in terms of runtime?
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iii) How much more efficient is the 2D-SVM-solver than the technically much easier 1D-
SVM-solver?

iv) How well does the 2D-SVM-solver work compared to standard software packages such
as LIBSVM [1]7

v) What is the advantage of warm start initializations when the parameter search is
performed over a grid?

To answer these questions we implemented the 1D-SVM and the 2D-SVM solver in C++,
and downloaded LIBSVM [1] version 2.82. The algorithms were compiled by LINUX’s gcc
version 4.3 with various software and hardware optimizations enabled. All experiments were
conducted on a computer with INTEL XEON X5355 (2.66 GHz) quad core processor and
8GB RAM under a 64bit version of RedHat Linux Enterprise 4. During all experiments
that incorporated measurements of runtime, one core was used solely for the experiments,
and the number of other processes running on the system was minimized. The runtime itself
was measured by the C function clock() from the library time.h. The resulting resolution was
0.01 seconds.

In some preliminary experiments we made a couple of observations that changed the de-
scribed implementation strategy slightly: First, it turned out that the auto-vectorization of
gce only gave mediocre and sometimes even contradicting results even if the implementa-
tion guidelines of gcc 4.3’s auto-vectorization were strictly followed. Therefore, we decided
to manually code SSE2 vectorized versions of the most important routines, namely: com-
puting kernel values, searching for the optimal 1D-direction, updating the gradient, and
computing the weighted sum E(«) of clipped slack variables. To this end, we used the
library emmintrin.h together with properly aligned arrays of doubles. Some of our prelimi-
nary experiments not reported here indicated that this specialized hardware instruction set
yielded a runtime improvement by a factor between 1.3 and 1.8 depending on the working
set selection strategy and the data set. In addition, the initial experiments suggested sub-
stantial numerical instabilities on a few datasets when using single floats, so we decided to
use double floats throughout the experiments. Second, we were rather disappointed by the
runtime behavior of LIBSVM, even when we enabled its shrinking heuristic.! After some in-
vestigations we found that the main reason for the disappointing runtime performance was
the fact that LIBSVM copies kernel rows into the kernel cache if one uses pre-computed ker-
nel matrices, which, as discussed below, we did throughout the experiments. This copying
mechanism results in a small number of iterations per second whenever the LIBSVM solver
is started on a new parameter point, while with the kernel cache being filled up during the
optimization, the solver is actually able to process more iterations per second. To ensure a
fair comparison, we thus decided to implement our own version of LIBSVM’s solver (without
shrinking strategy). As a side effect, this new implementation also benefited from the SSE2
instructions for upgrading the gradient. Unlike the subset selection strategy of the 1D-SVM-
solver, however, LIBSVM’s subset selection strategy, though implementable, does not benefit
from vectorization since not all indices are considered, and hence the relatively slow RAM
access of the CPU outweighs the speed improvement of the SSE2 instructions.

We downloaded all datasets for binary classification from LIBSVM’s homepage whose num-
ber of features did not exceed 1000. We made this cut because having data sets with a huge

In fact, it turned out that neither the number of iterations nor the runtime was significantly affected by
the shrinking heuristic.
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training size | test size | dimension | Test error 2D-svM | Test error LIBSVM

SONAR 146 62 60 12.80 + 4.04 12.68 + 4.27

HEART 188 82 13 17.42 + 4.39 17.58 + 3.80
LIVER-DISORDERS 248 97 6 29.76 £ 4.31 29.31 + 4.00
IONOSPHERE 248 103 34 8.59 £+ 2.85 5.43 + 2.16
AUSTRALIAN 484 206 14 14.54 + 2.09 14.76 + 2.21
BREAST-CANCER 493 190 10 3.15 + 1.07 3.30 &+ 1.06
DIABETES 544 334 8 23.68 + 2.49 23.43 + 2.38
FOURCLASS 623 239 2 0.04 + 0.14 0.09 + 0.18
GERMAN.NUMER 718 282 24 24.84 + 2.29 24.95 + 2.27
SVMGUIDES3 892 392 21 16.60 + 1.77 16.48 + 1.70
COVTYPE-2000 1392 616 54 23.92 £ 1.69 24.06 + 1.60
IJCNN1-2000 1424 584 33 4.38 + 0.93 4.38 + 0.91
AlA 1605 30956 123 15.89 + 0.21 15.78 + 0.17

SPLICE 2176 999 60 8.93 £+ 0.88 8.68 + 0.87

A2A 3365 30296 123 15.74 + 0.27 15.76 + 0.30

wlA 2477 47332 300 2.18 + 0.06 2.20 + o0.07

A3A 3185 29336 123 15.82 + 0.21 15.57 + 0.08

W2A 3470 46339 300 1.95 + 0.06 1.94 + 0.09
COVTYPE-5000 3472 1536 54 20.73 + 0.83 20.77 + 0.88
1JCNN1-5000 3486 1514 33 2.70 + 0.45 2.73 + 0.42
A4A 4781 33780 123 15.80 + 0.30 15.52 + 0.07

W3A 4912 44833 300 1.75 + 0.05 1.75 + 0.05
SVMGUIDE1 4959 2130 4 3.01 £+ 0.33 2.97 £+ 0.32
MUSHROOMS 5773 2351 112 0.00 + 0.00 0.00 + o0.01

Table 1: Size and dimensionality of the considered datasets together with the test errors (+ stan-
dard deviations) on 100 random runs for the 2D-SVM with WSS 7 working set selection and 11-W4
initialization and LIBSVM. The hyper-parameters were selected by 10-fold cross-validation on the 10
by 10 grid described in the text. Besides [ONOSPHERE, both algorithms performed almost indistin-
guishable. Moreover, the training and test set sizes refer to the splits used in the experiments on
the run time behavior of the SVM solvers.

number of features would have required substantial extra effort for implementing our al-
gorithms, and this effort was clearly out of the scope of this paper. In all cases we used
the scaled versions of these datasets, and if they were not available, we scaled the unscaled
datasets with the help of LIBSVM’s scaling tool. For datasets that were not split into a
training and test set we generated a random split that contained approximately 70% train-
ing and 30% test samples. Moreover, for the already split datasets SPLICE, SVMGUIDEL,
SVMGUIDE3, we decided to first merge the corresponding training and test set, and then
generate the random split above. For the large datasets COVTYPE and 1IJCNN1, we generated
random subsets of the two datasets of sizes n = 2000, 5000, and then applied the random
split above. Finally, we ignored some versions with larger training set of the AXA and
wWXA families, namely A5A — A9A, and W4A — W8A because of time or memory constraints.
Moreover, for these two families of data sets we kept the split between training and test
sets. Table 1 shows the corresponding characteristics of the considered datasets together
with classification errors of the fastest version of the 2D-SVM and LIBSVM, respectively.

In all our experiments we considered k-fold cross validation with randomly generated folds
performed on the training set. In our choice for the hyper-parameter grid we were guided by
recent theoretical results from [21], which show that asymptotically good values of A and o
are contained in the intervals [c;n 2, 1] and [c2, c3n'/9], respectively, where n is the number
of training samples, d is the input dimension and c;, co, and c3 are arbitrarily specifiable
constants. Based on this result, we considered a geometrically spaced 10 by 10 grid in
[10n=2,1] x [0.1,2n1/4), i.e., the ratio of consecutive grid points was constant. Moreover, it
is worth mentioning that during the k-fold cross validation A was internally converted to C
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by the formula C' := 5 to accommodate the fact that the actual training set size for

k-fold cross validation is approximately (k — 1)n/k.

In all experiments with the 1D-SVM and the 2D-SVM we used € := 0.001 for the stopping
criterion (9), while for our version of LIBSVM’s solver we used, like the original LIBSVM, the
classical MVP stopping criterion with value ¢ = 0.001. Here we note that this was necessary
since LIBSVM’s solver deals with SVMs with offset b, and hence the stopping criterion (9)
is no longer applicable. In addition, an appropriately modified stopping criterion seems to
be computationally inefficient, while by [15, Lemma 8] the MVP stopping criterion with
value € = 0.001 also ensures (8) for ¢ := 0.001 and f* instead of [f*]';. In other words,
LIBSVM’s default value, which we picked throughout our experiments, actually has a good
interpretation in terms of learning. Of course, the different stopping criteria used raise
the question whether the results reported below are due to differences in the working set
selection strategy, the different nature of the optimization problem, or the stopping criteria.
In this regard, we note that in the experiments with LIBSVM our goal is to compare the entire
2D-SVM-solver with a state-of-the-art solver, rather than to, e.g., compare different working
set selection strategies. Obviously, for this purpose it is irrelevant whether the working set
selection strategy, the nature of the optimization problem, or the different stopping criteria
are more responsible for differences in the runtime. Nonetheless, it remains an interesting
question for future work whether solver’s for SVMs with offset can also benefit from some
of the ideas of the working set selection strategies introduced for the 2D-SVM-solver.

In all experiments we pre-computed the kernel matrix in order to avoid that these solver
independent but dataset dependent computations are contained in the reported training
time. Obviously, this approach gives us a clearer view of the performance of the core
solver, on the downside however, this may be an unrealistic setting for large datasets whose
kernel matrices do not fit into the computers memory. On the other hand, for all consid-
ered datasets the matrices did fit into memory, and in addition, it turned out that for all
datasets there were parameter regions of the grid where all or basically all vectors were
support vectors. Clearly, the corresponding kernel rows would have been computed if we
had not precomputed the kernel matrices, and consequently, training over the grid would
have required the solver to compute the kernel matrix anyway. In other words, our exper-
iments suggests that training over a grid with medium-sized datasets whose kernel matrix
still fits into memory, there is no need to implement a caching strategy. In fact, we strongly
conjecture that without pre-computing the kernel matrices, our experiments would have
rendered computationally infeasible with one computer only. It is, of course, needless to
say, that the situation may change, if other parameter selection strategies are used, or the
datasets are too large.

5.1 Comparing classification performance

Comparing the standard SVM optimization problem with the version in (1), which does
not have an offset, the first question is probably, whether the absence of the offset term
has an influence on the classification performance. To answer this question we performed
on each data set 100 runs for both a version of the 2D-SVM-solver and our implementation
of LIBSVM’s solver. We performed these experiments, though we report them first, actually
at the very end of our investigations. This way, we could use for each solver the fastest
version. For the 2D-SVM-solver it turned out, as we will see below, that this is the WSS 7
strategy together with 11-W4 initialization, while for the LIBSVM’s solver we used, depending
on the dataset, either 11-W2 or 11-W5 initialization. Besides for the datasets of the AXA and
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WXA families, we generated for each dataset 100 random splits, where each training set
contained, modulo randomness, 70% of the samples. Moreover, on each of these training
sets the hyper-parameter selection was performed by 10 fold cross-validation over the pa-
rameter grid described above. The test error was then computed on the test set part of
the split, which, modulo randomness, contained 30% of the samples. The resulting average
classification errors are reported in Table 1. As one quickly observes, LIBSVM yielded the
better classification performance on the dataset IONOSPHERE and the two larger versions
of the AXA family. On all other datasets, however, both algorithms performed almost in-
distinguishable. Therefore, it seems fair to conclude that the classification performance is
not significantly influenced by the absence of the offset.

5.2 Comparisons to the optimal 2D subset selection strategy

In our first set of experiments on 2D subset selection strategies, we investigated the number
of iterations needed for the different strategies of selecting working sets. Our baselines were
the 1D-SVM-solver and the optimal 2D-SVM strategy WSS 0. Since the latter is computa-
tionally very expensive we decided to use only half of the samples of each training set for
actual training. Besides that, we followed the approach of k-fold cross validation with k£ = 2
outlined earlier. Finally, in all experiments of this subsection, we initialized by « « 0.

Let us now have a closer look at the results that are displayed in Figures 1 to 4. Fig-
ure 1 compares the 1D-SVM, WSS 0 and the simple 2D-modifications of the 1D-SVM. Not
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Figure 1: Performance of methods based on simple extensions of the 1D-search strategy for small (left), mid-
sized (middle), and relatively large datasets (right). The graphic displays the average number of iterations
in thousands for the different methods over the entire 10 by 10 parameter grid. All 2D-methods perform
better than the 1D-SVM (gray), but the amount of improvement differs significantly. WSS 2 (red) performs
sometimes better and sometimes substantially worse than WSS 1 (blue), but combining both methods into
WSS 3 (dark magenta) leads to uniform improvements. The same holds for WSS 5 (light green), though with
less improvements. The combination WSS 7 (dark green) uniformly yields the lowest number of iterations.

surprisingly, WSS 0 needs substantially less iterations than its one-dimensional equivalent
1D-SVM, while all of the simple 2D-modifications perform somewhere in between. More
precisely, WSS 1 yields some significant improvement over the 1D-SVM. For WSS 2 the mes-
sage is mixed; while on some datasets, WSS 2 performs significantly better, the difference is
more marginal on other datasets. However, combining WSS 1 and WSS 2 into WSS 3 yields a
clear overall improvement over both methods and the 1D-SVM. Another combination, WSS
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Figure 2: Performance of methods based on approximations of the optimal 2D-search strategy. The graphic
displays the average number of iterations in thousands for the different methods over the entire 10 by 10
parameter grid. WSS 0 (black) performs uniformly best, but both deterministic strategies WSS 32 (red) and
WSS 128 (orange), which are basically indistinguishable, closely follow the performance of WSS 0. WSS 7
(dark green) and the hybrid WSS 64 (dark blue) still captures most of the behavior of the previous methods
with small advances for WSS 7, while the complete randomization (light blue) performs uniformly worst.

5 that combines WSS 1 with a search over 10 nearest neighbors, also needs substantially less
iterations than WSS 1 and the 1D-SVM, but the improvements are less than those of WSS
3. However, the combination of all, WSS 7, does not only perform uniformly better than
all participating methods, but also needs in most cases only a few more iterations than the
optimal WSS 0. Finally, WSS 8, which is a variant of WSS 1, also reduces the number of
iterations substantially, yet it fails to perform as well as WSS 7. Let us now have a closer
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Figure 3: Combining methods based on simple 1D-extensions with the approximate gain on inner SVs. The
graphic displays the average number of iterations in thousands for the different methods over the entire 10
by 10 parameter grid. Without combining WSS 512 (red) with other methods, it performs quite poorly, while
combining WSS 512 with WSS 3 (dark magenta) to WSS 515 (light magenta) yields an improvement over both
methods. In contrast, combining WSS 512 and WSS 7 to WSS 519 (light green) does not give an improvement
over WSS 7 (dark green) as the almost indistinguishable two green lines show.

look at Figure 2 that shows how the methods based on an approximation of the optimal
WSS 0 perform. Here it turns that WSS 32, which uses the exact computation of the 2D-
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Figure 4: LIBSVM and MVP compared to some other approaches. The graphic displays the average number
of iterations in thousands for the different methods over the entire 10 by 10 parameter grid. On all datasets
considered, the 2D-MVP strategy WSS 16 (orange) has some advantage over the simple 1D-SVM (gray),
while LIBSVM (red) often needs substantially less iterations and performs comparably to the WSS 1 (blue).
However, neither of the methods approach the close-to-optimal performance of WSS 7 (dark green) or even
the optimal performance of WSS 0 (black).

gain, and WSS 128, which uses an approximation of the 2D-gain, perform indistinguishably.
In addition, they only need a few more iterations than WSS 0, and constantly outperform
WSS 7, yet the latter improvement is in most cases only marginal. Finally, the random
approaches WSS 64 and WSS 256 do not need less iterations than WSS 7, and the complete
random approach of WSS 256 performs worse than the hybrid strategy of WSS 64. However,
by comparing with Figure 1 we see that WSS 256 still needs significantly less iterations than
the 1D-SVM.

Another way to approximately compute the 2D-gain is implemented in WSS 512. Figure
3 compares the number of iterations of this method to the 1D-SVM, WSS 0, and some
combinations of WSS 512 with simple 2D-extensions of the 1D-SVM approach. A closer
look at this figure shows that WSS 512 alone is not a very good alternative to the 1D-SVM,
while combinations do yield significant improvement. However, these improvements are not
significantly better than WSS 7.

Finally, let us compare the 1D-SVM and the optimal 2D strategy WSS 2 with the MVP
approach of WSS 16 and LIBSVM. Figure 4 shows that the 2D-MVP approach of WSS 16
performs only slightly better than the 1D-SVM. In contrast, LIBSVM needs, not surprisingly,
substantially less iterations than the 1D-SVM, but it fails to perform as well as the simple
WSS 3, and the more complicated WSS 7.

5.3 Comparisons of different 2D subset selection strategies

The experiments of the previous subsection identified some working set selection strategies
that perform close to the optimal WSS 0 in terms of iterations. All these strategies were of
order O(n), yet is seems obvious, that their computational requirements in terms of runtime
may substantially differ. Therefore, the goal of the experiments in this sections is to evaluate
the selection strategies in terms of their runtime. To this end, we performed 10-fold cross
validation training on our datasets, where the details of the cross validation procedure were
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already outlined above. In the following, we not only report the runtime of the different
strategies, but also their iterations. This way, it becomes easier to judge whether a strategy
suffers from its large number of iterations or only from its computational requirements for
selecting the working set. We always report the average requirements per grid point, where
the average is either taken with respect to all 10 folds and the grid, or just with respect to
the 10 folds and the grid points whose validation error is close to the minimal validation
error. The latter averages are of particular interest, if one does not use grid search for the
hyper-parameter selection, but some other methods, such as [10], which may find a good
hyper-parameter pair faster. In addition, the latter averages are also interesting for grid
search since after such a search one usually retrains the SVM on the entire training set with
the hyper-parameters that performed best in terms of validation error.

Let us now have a closer look at the results. The first observation from Figures 5 and
6 is that WSS 2, which needs less iterations than the 1D-SVM, does not run substantially
faster. However, this behavior can be relatively easily explained by the fact that in each
iteration the 1D-SVM updates the gradients for one direction only, whereas WSS 2, due to
its 2D-nature, performs two such updates per iteration. Similarly, WSS 8 cannot translate
its advantage over WSS 1 in terms of iterations into a substantial advantage in terms of
runtime. In this case, a closer look reveals that, compared to WSS 1, WSS 8 performs an
additional, implicit gradient upgrade when looking for the second direction j. The other
results displayed in Figures 5 and 6 confirm our results from Figure 1. In particular, WSS 7
not only need the fewest number of iterations, but also runs fastest on almost all datasets.
Finally, Figure 7 reveals, where some combined methods achieve their speed-up compared to
WSS 1. In particular, for large values of A\, WSS 3 and WSS 7 need only half of the iterations
of WSS 1 and WSS 5, which indicates that in this regime, WSS 2 is the dominating strategy
in the former two combinations. On the other hand, for small values of A, the nearest
neighbor strategy WSS 4 seems to be the dominating working set selection strategy of WSS
5 and WSS 7 since both methods need substantially less iterations than the methods WSS 1
and WSS 3, which do not include the nearest neighbor strategy. Finally, these advantages
in terms of iterations do translate into almost the same advantage in terms of runtime,
since the additional costs of the nearest neighbor strategy only depend on the number k of
considered nearest neighbors, which, in general, is quite small compared to the sample size.
Nonetheless it is worth mentioning that for a few hyper-parameter pairs, it is faster not to
use the nearest neighbor strategy.

Let us now turn to Figures 8 and 9 that consider the methods that try to approximate
the working set strategy of the optimal WSS 0. Here it turns out, that WSS 32 and WSS 128,
whose required number of iterations were closest to WSS 0, have a significant higher runtime
than WSS 7. Since the number of iterations of these three methods behave quite similarly,
the only explanation for this different runtime behavior is the additional cost per iteration
for computing all (approximate) 2D-gains. This explanation is further confirmed by the
fact that WSS 128, which involves the cheaper approximate 2D-gain has a better runtime
behavior than WSS 32, which uses the exact computation of the 2D-gain. Furthermore, WSS
64, which computes only a fifth of the 2D-gains WSS 32 computes, runs substantially faster
than WSS 32, despite the fact the the former needs more iterations. In this direction we
finally note that WSS 256 runs overproportionally slowly compared to, e.g., WSS 128. Most
likely, this behavior can be explained by less effective hardware caching for the random pair
selection of WSS 256. To get a better impression, on how effective WSS 7 chooses its working
sets, let us now have a closer look at the number of iterations of the different working set
selection strategies. The bottom graphics of Figure 8 show that over the entire grid, WSS

29



7 only needs 5% to 20% more iterations than the best performing WSS 32. However, if
one considers only the grid points with small validation error, this good behavior becomes
worse. Indeed, the bottom graphics of Figure 9 show that for such hyper-parameters, WSS
7 typically needs more than 20% more iterations than WSS 32, and in some cases even more
than 50% more. Finally, Figure 10 reveals that in particular for small values of A and flat
kernels, WSS 7 requires substantially more iterations than WSS 32. However, at least on the
dataset SVMGUIDE] this worse behavior takes place at grid points that do not need a lot
of iterations anyway, and hence the advantage of WSS 32 is marginal. The next question,
which naturally arises from the observations above, is whether the number of iterations
used in WSS 7 can be reduced by combining WSS 7 with some methods that mimic WSS 32
on the inner support vectors. Here, Figure 8 shows that the number of iterations can be
reduced by such combinations in a few cases, but this never pays off in terms of runtime if
one considers the entire grid. On the grid points with small validation error, however, the
situation is slightly more involved. Clearly, the combination with WSS 2048 performs worst,
yet combining WSS 7 with WSS 512 or WSS 1024 sometimes yield a shorter runtime. Finally,
Figure 13 shows that, at least for the dataset SVMGUIDE1, the improvements achieved by
these combinations are mainly at grid points that do not require a lot of iterations. On
the other hand, it also illustrates that the computational overhead of these combinations is
significant.

The last figures of this subsection, Figures 14 to 16, compare LIBSVM with some subset se-
lection strategies such as the MVP approach of WSS 16 and the overall best performing WSS
7. Here the most interesting observation is that although WSS 1 and LIBSVM have compa-
rable behavior in terms of iterations, they substantially differ in runtime. Because we used
our own implementation of LIBSVM’s solver, which employed the same SSE2 optimizations
as the 2D-SVM methods, the only way to explain this behavior is that the subset selection
strategy of LIBSVM is significantly more expensive than the simple WSS 1. To understand
the latter, recall that LIBSVM’s strategy is based on computing an approximate 2D-gain,
which is quite expensive as we have seen in Figures 8 and 9 for the 2D-SVM methods WSS
32, WSS 64, WSS 128, and WSS 256. In addition, LIBSVM’s strategy cannot be efficiently
vectorized, which is another disadvantage compared to WSS 1. Finally, it is interesting to
note that WSS 7 is between 2 and 4 times faster than LIBSVM, when the average over all
grid points is considered. Moreover, on the grid points with small cross validation error the
improvement is rarely less than by a factor of 4, and as Figure 16 illustrates, this is most
likely not an artefact caused by different optimal grid points. Indeed, on some grid points
LIBSVM needs more than 10 times the run time WSS 7 requires.
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Figure 5: Average computational requirements per grid point of methods based on simple extensions of the
1D-search strategy for small (left), mid-sized (middle), and relatively large datasets (right) over the entire
10 by 10 grid. The graphics display the number of iterations in thousands (top), the runtime in seconds
(middle), and the ratios WSS x/WSS 1 of the runtimes (bottom). WSS 7 (dark green) performs almost
uniformly the best in both metrics, followed by WSS 3 (dark magenta) and WSS 5 (light green) in terms of
runtime.

31



2% T 0

: T
——1D-5VM ——1D-svM ——1D-svM
—Wwss1 ——Wwss1 ——Wwss1
——Wss8 ——Wwsssg ——Wwssg
——Wwss2 —Wwss2 S0H —— WSS 2 E
2 ——wss3 1 W —wss3 ——Wwss3
WSS 5 Wss5 Wss5
——Wwss7 —Wwss7 —Wwss7
o 1
15 4 st
\\ 30- 1
10r |
\/
\ 200 4
\

. ! , .
0
50‘\3‘ x\@“(& QQ\@@ 6@6@‘6 c@(\"e‘ 5\@\‘”(\ ) ﬁve\es \)‘c\ac"e e@"’(\ Q\;\@% Y. o ¥ o N
& \ N ) 10 ¢ \ ¢ N
& “‘eas 2 AR Go“d‘) i
2
0 ; 04 T T 1 T
——1D-SVM ——1D-SVM —— 1D-SVM
——wss1 ——wss1 A gol| —wss1 i
——Wss8 0357 —— WSS 8 I\ ——Wss8
5 ——wss2 1 —Wwss2 —wss2 |
——Wss3 ——Wss3 087 ——wss3 | 1
WSS 03] WSS5 \ WSS |
——Wss7 ——Wwss7 \ 07 ——Wss? | 4

—wss1 —Wwss1 ——Wss1

——wss8 | ——wss8 ——wss8
——wss3 ——wss3 1] ——wsss i

wss5 WSS Wss5

2 ——wss7 ] 2 ——wss? ——Wss7

/ . 0 . . . . . . 02 . . . . . .

© o @ & e N o W 3 W ‘3 LIS 3 %3 3% 3 0 © ‘3
R R e \F & @ o [ S S R Y R AN Y CO™ O s
" 0\)5\‘ PO Qe“(\ PV 5 By N 5 9

o‘\@‘ ‘(\2")(\ ‘(\eﬁe
° * o RUCR LR g q“‘Q o
& g o if B o

AU
W

Figure 6: Computational requirements of methods based on simple extensions of the 1D-search strategy on
the grid points whose cross validation error is not larger than 1.05 the minimal cross validation error. The
graphics display the average number of iterations in thousands (top), the runtime in seconds (middle), and
the ratios WSS x/WSS 1 of the runtimes (bottom). For the small datasets, the runtime measurements are
not very reliable. In addition, the set of considered grid points may slightly vary for the different methods,
which in turn may influence the computational requirements and hence the graphic at the bottom left has
little informative value. It seems fair to say that overall, WSS 7 performs best in both metrics, but is closely
followed by WSS 5 in terms of runtime. Moreover, on some datasets, such as SVMGUIDE1, WSS 7 performs
worse than WSS 8. However, comparing this with Figure 7 shows that this behavior is due to different grid
points with small cross validation error.
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Figure 7: Computational requirements per single grid point of methods based on simple extensions of the
1D-search strategy for the SVMGUIDEL dataset. Each horizontal cell numbered by 1 to 10 corresponds to a
single kernel parameter o and an ordered run through the 10 A-values, where the left of each cell corresponds
to the largest A-value, and the right to the smallest. Analogously, cell 1 corresponds the the largest o-value,
and cell 10 on the right corresponds to the smallest o-value. The graphics at the top display the number of
iterations in thousands (left) and the runtime in seconds (right), both averaged over the 10 folds, for WSS 1
(blue), WSS 3 (dark magenta), WSS 5 (green), WSS 7 (dark green), and WSS 8 (light blue). WSS 7 performs
almost uniformly the best in both metrics. However, for large A, WSS 3 performs comparable, while for small
A, WSS 7 is closely followed by WSS 5. The graphics at the bottom show the ratios WSS x/WSS 7, x=1,3,5, 7,
for the number of iterations (left) and the runtime (right) to illustrate the performance gain of WSS 7.
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Figure 8: Average computational requirements per grid point of methods based on approximations of the
optimal 2D-strategy. The graphics display the number of iterations in thousands (top), the runtime in
seconds (middle), and the ratios WSS x/WSS 32 of the number of iterations (bottom). Although WSS 7 (dark
green) and the semi-random WSS 64 (blue) need slightly more iterations than WSS 32 (red) and WSS 128
(orange), their costs per iteration is substantially less, which results in a significantly shorter runtime. The
completely random WSS 256 (light blue) needs over-proportionally more runtime, possibly because of the
less effective hardware cache.
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Figure 9: Computational requirements of methods based on approximations of the optimal 2D-strategy
on the grid points whose cross validation error is not larger than 1.05 the minimal cross validation error.
The graphics display the average number of iterations in thousands (top), the runtime in seconds (middle),
and the ratios WSS x/WSS 32 of the number of iterations (bottom). For the small datasets, the runtime
measurements are not very reliable. In addition, the set of considered grid points may slightly vary for the
different methods, which in turn may influence the computational requirements.
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Figure 10: Computational requirements per single grid point of methods based on approximations of the
optimal 2D-strategy for the sSVMGUIDE] dataset. The four graphics have the same format as the ones in
Figure 7. The graphics at the top display the number of iterations in thousands (left) and the runtime in
seconds (right), both averaged over the 10 folds, while the graphics at the bottom display the corresponding
ratios WSS x/WSS 7. For some grid points, WSS 7 and WSS 32 need approximately the same number of
iterations, while for some other grid points, WSS 7 needs significantly more. Nonetheless, the runtime
behavior of WSS 32 is substantially worse than that of WSS 7.
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Figure 11: Average computational requirements per grid point of combining WSS 7 (dark green) with some
methods that use the formula for the approximate gain on inner SVs over the entire 10 by 10 grid. The
graphics display the number of iterations in thousands (top), the runtime in seconds (middle), and the
ratios WSS x/WSS 7 of the runtimes (bottom). Although the combinations need a slightly smaller number
of iterations, their additional overhead per iteration leads to worse runtime behavior.
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Figure 12: Computational requirements of combining WSS 7 with some methods that use the formula for
the approximate gain on inner SVs on the grid points whose cross validation error is not larger than 1.05
the minimal cross validation error. The graphics display the number of iterations in thousands (top), the
runtime in seconds (middle), and the ratios WSS x/WSS 7 of the runtimes (bottom). For the small datasets,
the runtime measurements are not very reliable. In addition, the set of considered grid points may vary
slightly for the different methods, which in turn may influence the computational requirements. As in Figure
11 some of the combinations need a slightly smaller number of iterations, but their additional overhead per
iteration leads to worse runtime behavior on most of the medium-sized and large datasets.
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Figure 13: Computational requirements per single grid point of methods based on simple extensions of the
1D-search strategy for the sVMGUIDE] dataset. The four graphics have the same format as the ones in
Figure 7. The graphics at the top display the number of iterations in thousands (left) and the runtime in
seconds (right), both averaged over the 10 folds, while the graphics at the bottom display the corresponding
ratios WSS x/WSS 7. Note that for large A the Boolean flag of WSS 4 is typically not set to true during the
optimization, and hence all methods reduce to WSS 3. Analogously, for large A and o, the graphics nicely
display the additional costs of WSS 512 and WSS 1024. Finally, the differences in the run time occur on a
very low and hard to measure level, which explains the fluctuations in the bottom right graphics.
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Figure 14: Average computational requirements per grid point of LIBSVM and MVP compared to some other
approaches over the entire 10 by 10 grid. The graphics display the number of iterations in thousands (top),
the runtime in seconds (middle), and the ratios x/WSS 7 of the runtimes (bottom). The 2D-MVP approach
of WSS 16 (orange) is not a good alternative to the 1D-SVM (gray) or even the two-dimensional WSS 7 (dark
green). Moreover, although WSS 1 (blue) and LIBSVM (red) perform approximately the same number of

iterations, their runtime is significantly different due to the more expensive working set strategy of LIBSVM
(red).
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Figure 15: Computational requirements of LIBSVM and MVP compared to some other approaches on the
grid points whose cross validation error is not larger than 1.05 the minimal cross validation error. The
graphics display the average number of iterations in thousands (top), the runtime in seconds (middle), and
the ratios x/WSS 7 of the runtimes (bottom). Again, for the small datasets, the runtime measurements are
not very reliable. In particular, for the SONAR dataset, the average measured runtime for WSS 7 was 0.00
seconds, and hence the corresponding ratios could not be plotted. Besides that the conclusions of Figure 14

are confirmed.
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Figure 16: Computational requirements per single grid point of methods based on simple extensions of the
1D-search strategy and LIBSVM on the sSVMGUIDE]L dataset. The four graphics have the same format as the
ones in Figure 7. For flatter kernels, LIBSVM needs less iterations than WSS 7, possibly because it solves
a different optimization problem, however the improvement is small in terms of absolute numbers. On the
other hand, both WSS 1 and WSS 7 are less sensitive to small A values in regions with high computational
demand.
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5.4 Influence of the stopping criterion

In this subsection, we investigate the influence of the stopping criterion (9) on the com-
putational requirements. To this end, we considered the 10-fold cross validation procedure
described earlier. Moreover, in order to save time, we only considered the best performing
working set selection strategy, namely WSS 7. For this method we considered our stopping
criterion (9) and the classical duality gap stopping criterion (7), where we set the right
hand side of both stopping criteria to be €/(2\) with € := 0.001. Note this this is exactly
the same set up as in our previous experiments, and it is not hard to show that for the
duality gap (7), this choice again leads to the same theoretical bounds on the generalization
performance.

The results of our experiments are summarized in Figures 17 to 19. A quick look shows
that, not surprisingly, the stopping criterion (9) never leads to more iterations, but the im-
provements depend very much on the dataset. Moreover, these smaller number of iterations
also pay off in terms of runtime, though the effect is less pronounced when we consider the
entire grid. We believe this is due to the fact that computing (9) is a little more expensive
than computing (2) since it involves two rather than just one clipping operations. In this
regard, it is interesting to note that the SSE2 instruction set in emmintrin.h makes it possible
to avoid expensive branches for the compution of the clipping by providing min() and maz()
operations. Moreover, when we only consider the grid points with small validation error,
the positive effect of the clipped duality gap is amplified as Figure 18 shows. The reason
for this behavior is illustrated in Figure 19 for the sSVMGUIDE1 dataset. Indeed, this figure
shows that for small values of A, the stopping criterion (9) leads to both substantially less
iterations and shorter runtimes, whereas for larger A\, the computational requirements for
both stopping criteria are essentially the same. In other words, although uniformly superior
the effect of (9) is highly inhomogenously distributed over the parameter grid.
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Figure 17: Average computational requirements per grid point of WSS 7 with different stopping criteria for
small (left), mid-sized (middle), and relatively large datasets (right). The graphics at the top display the
number of iterations in thousands for the different stopping criteria applied to the 2D-SVM with WSS 7, while
the graphics in the middle show the corresponding runtime in seconds. The graphics at the bottom display
the ratio of runtimes. Not surprisingly, the clipped duality gap (9) always leads to less iterations than the

classical duality gap stopping criterion (7).

behavior.
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Moreover, in most cases, this also results in a better runtime
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Figure 18: Computational requirements of WSS 7 with different stopping criteria on the grid points whose
cross validation error is not larger than 1.05 the minimal cross validation error. Again, the graphics at the
top display the number of iterations in thousands for the different stopping criteria applied to the 2D-SVM
with WSS 7, while the graphics in the middle show the corresponding runtime in seconds. The graphics at
the bottom display the ratio of runtimes, where we note that for some datasets in the bottom left graphic

the ratio could not be computed since the measured run time was zero.
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Figure 19: Computational requirements per single grid point of the two stopping criteria for the SVMGUIDE1
dataset. The four graphics have the same format as the ones in Figure 7. The graphics at the top display
the number of iterations in thousands (left) and the runtime in seconds (right), both averaged over the 10
folds, while the graphics at the bottom display the corresponding ratios. The clipped stopping criteria (9)
helps for small values of A, whereas for larger values the behavior is basically identical. Again, some of
the roughness in the bottom right graphic can be explained by the resolution of the time measurements.
However, the general trend in this graphic is confirmed by the ratio of iterations displayed in the bottom
left graphic.
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5.5 Comparing different numbers of nearest neighbors

So far we have considered WSS 7 for 10 nearest neighbors only. Of course, this was a rel-
atively arbitrary choice, and hence it is interesting to investigate how the computational
requirements change with the number of nearest neighbors. This is the goal of this subsec-
tion.

To this end, we again used the 10 fold cross validation approach described earlier.
We further considered the behavior of WSS 7 for N-nearest neighbors, where N =
5,10,15,20,25,30. Our first observation was that for N = 25 and N = 30 there was
rarely an improvement in terms of iterations, but the required runtime tended to slightly
increase compared to smaller N. In order to keep the figures clean, we hence plot the re-
sults for N = 5,10, 15,20, only. Figures 20 and 21 show that WSS 7 behaves slightly worse
for N = 5, while for larger N the behavior over the entire grid is essentially indistinguish-
able. The latter observation mildly changes if one only considers the hyper-parameters with
small cross validation error, yet it is unclear to which extend this effect is caused by different
hyper-parameters picked by the different methods. In addition, a detailed look at Figure
22 does not really clarify the situation since many of the run times measured are close to
the finest resolution time.h could provide. Consequently, it seems safe to say that at least
in the range N = 10...20 the performance of WSS 7 is essentially independent of N.
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Figure 20: Average computational requirements per grid point of WSS 7 with different numbers N of nearest
neighbors for small (left), mid-sized (middle), and relatively large datasets (right). The graphics display
the number of iterations in thousands (top), the runtime in seconds (middle), and the corresponding ratios
xNN/10NN of the runtimes (bottom). Besides, for N = 5, and the small datasets on which the time
measurements are not very reliable, the performance is basically identical.
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Figure 21: Computational requirements for WSS 7 with different numbers NV of nearest neighbors on the
grid points whose cross validation error is not larger than 1.05 the minimal cross validation error. The
graphics display the average number of iterations in thousands (top), the runtime in seconds (middle), and
the corresponding ratios t NN/10NN of the runtimes (bottom). The plots suggest that for grid points with
good validation error the number of nearest neighbors has a stronger influence than for the average grid
point, yet it is unclear to which extend this effect is caused by different hyper-parameters picked by the
different methods.
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Figure 22: Average computational requirements per grid point of WSS 7 with different numbers N of nearest
neighbors for the sSVMGUIDE1 dataset. The four graphics have the same format as the ones in Figure 7.
The graphics at the top display the number of iterations in thousands (left) and the runtime in seconds
(right), both averaged over the 10 folds, while the graphics at the bottom display the corresponding ratios
xNN/10NN. Using 5 nearest neighbors clearly results in a worse performance compared to using 10 nearest
neighbors. Moreover, compared to N = 10 the number of iterations can be further reduced by using more
nearest neighbors, but due to unreliable measurements of the run time, it remains somewhat unclear, if this
results in a significantly shorter run time.
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5.6 Comparing different initializations

Let us now investigate the influence of different initialization strategies on the computa-
tional requirements. To this end, we trained 2D-SVM with WSS 7 and with the different
combinations of cold start and warm start options on all the datasets summarized in Table
1.

Figure 23 shows that initializing with zeros always leads to less iterations than initializ-
ing with a kernel rule. Surprisingly, however, the required runtime for both initialization
strategies is substantial less different. A closer inspection revealed? that this is caused by
the fact that the solver initialized with the kernel rule method 11-W1 spends most of its
iterations during initialization, that is, most of the iterations counted are from the outer
loop of Procedure 4. Since these iterations do not involve a working set selection step, they
are relatively cheap compared to the iterations of the actual solver discribed in Algorithm
2. Moreover, Figure 23 shows that the simple warm start strategies W2, W3, and W5 do
reduce the computational requirements significantly, where in almost all cases the scaling
approach of W3 and W5 performs superior.

Interestingly, the computational requirements can often be further reduced by one of the
more complicated initialization strategies W4 and W6 as Figure 24 illustrates. In particular,
the combinations 10-W4, 11-W4, and 10-W6 run in most cases faster than the simple combi-
nation 10-W3, and overall it seems fair to say that 11-W4 performs best. However note that
this approach requires access to the entire kernel matrix, and hence the combinations 10-W4
and 10-W6 may be the better choice, if storing this matrix is not an option.

Finally, we conducted a control experiment in which the warm start options available for
SVMs with offset are compared. Figure 25, which displays the corresponding results, shows
that in most cases scaling by W3 and W5 is better than keeping the solution, i.e., W2. This
is similar to our results for SVMs without offset, but a closer look reveals, that the runtime
gain for SVMs with offset is both less pronounced and less consistent. In particular for the
larger datasets, the gain by using a warm start for SVMs with offset is about 20%, while for
SVMs without offset it is about 45% even if only the simple warm start option W5 is used.
Moreover, the more complex strategies for SVMs without offset can reduce the runtime by
about 60% on these datasets. Consequently, it seems fair to say that SVMs without offset
benefit substantially more from warm start strategies than SVMs with offset do.

Let us finally have a detailed look at the performance of some of the initialization strate-
gies. Here Figure 26 reveals that the warm start options perform almost uniformly better
than the cold start option 10-W0. Moreover, the complex warm start strategy W4 achieves
it largest gains at small values of A, which is not surprising since it starts with large values
of A. Moreover, the grid points that need the most computational requirements all have
relatively small values of A, which explains why the strategy W4 is successful. On the other
hand, the strategies W5 and W6 start with small values of A\, and hence they do not achieve
any improvement over 10-WO0 for such A. However, they achieve a significant improvement
for large and medium values of A, which in turn explains their success. By combining these
observations and the fact that the cold start 10 requires a relatively small number of itera-
tions on medium values for A, it seems promising to use a hybrid strategy that starts with
such a medium value for A\, and then performs W4 for smaller A and W6 for larger values.
However, investigating such a strategy is out of the scope of this paper.

2For brevity’s sake we omitted the display of the corresponding plots.
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Figure 23: Average computational requirements per grid point of simple initialization strategies for the
2D-SVM with WSS 7 for small (left), mid-sized (middle), and relatively large datasets (right). The graphics
display the number of iterations in thousands (top), the runtime in seconds (middle), and the ratios Ix-
Wy/10-W0 of the runtimes (bottom). The cold start initializations with zeros (10-plots) almost always need
less iterations but in some cases more runtime. The reason for this seemingly paradoxical behavior is the
fact the most of the Il-iterations are performed during the initialization phase and hence do not require
the costly search for the optimal directions to optimize over during the solver phase. On the other hand,
I1-initializations require computing the entire kernel matrix which may be prohibitive for larger datasets.
Finally, scaling the previous solution, i.e., W3 and W5, is in almost all cases faster than keeping the solution
as done in W2.
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Figure 24: Average computational requirements per grid point of more complex initialization strategies
for the 2D-SVM with WSS 7 for small (left), mid-sized (middle), and relatively large datasets (right). The
graphics display the number of iterations in thousands (top), the runtime in seconds (middle), and the ratios
Ix-Wy/10-WO0 of the runtimes (bottom). Note that, again, the cold start initializations with zeros (10- plots)
need less iterations but in most cases more runtime. In almost all cases, the more complicated initialization
strategies perform better than the simple warm start approaches. Overall, 10-W4, 11-W4, and 10-W6 are the
most efficient methods in terms of runtime.

93



T
10-Wo

T
10-Wo

T
10-Wo

10w —— 10w —— 10w
0850 10wy T 16— ——10-w3
Io-ws| N Io-Ws| 6 10-ws| —
04 ]
N
N
035 — —
03 S
025 —
02 — —
015 i
af  _—— —
-
o , , , , , ,
\ & © & 5 5 S
& o CAR ¢ e o 3
0" ¥ N o A NG AR (© ¥
,\0‘\0"" e‘,@\‘v es\"‘ P
W o
x10°
:
10-Wo|
——10-W2
——10-w3
25 Io-ws| ]
) .
15 —
| i
05 — |
— /
——
, , , , , ,
\ & @ © & 5 5 S
& ¢ ¢ A S 3
o ¥ 3 o A % o° O >
R R
@ @
W o
1 = 09F N ]
\\V |
A —
1 09 08F \// B
T o8 \ //' 07h ]
\ /
] \ /
07h N \ / 06l i
] N \\ /
\ /
1 s \Y 05 4
o ‘ ‘ ‘ ‘ ‘ ‘ o5 ‘ ‘ ‘ L ‘ o ‘ ‘ ‘ ‘ ‘ ;

& g © 5 ¥ g o 5 N > \ 0 S 0 ? 2 (@ 13 > A% S 0 © >
o @ Q“e Iy \@\\0 e \0\05 e /,LQQ ,,LQQ P ,6“0 ¥ R o P o 9 & (¥ o P
P A UG A N & ° @ NACA

X \\\,e\ “‘e’f) S i 004\\! i 5 o & o

Figure 25: Average computational requirements per grid point of more complex initialization strategies for
the LIBSVM for small (left), mid-sized (middle), and relatively large datasets (right). The graphics display
the number of iterations in thousands (top), the runtime in seconds (middle), and the ratios Ix-Wy/I0-W0 of
the runtimes (bottom). Like for SVMs without offset, using a warm start pays off for this SVM with offset,
but the gain is less pronounced.
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Figure 26: Computational requirements per single grid point of some initialization strategies for the
SVMGUIDEL dataset. The four graphics have the same format as the ones in Figure 7. The graphics at
the top display the number of iterations in thousands (left) and the runtime in seconds (right), both aver-
aged over the 10 folds, while the graphics at the bottom display the corresponding ratios 10-Wx/I10-w0. All
warm start strategies perform almost uniformly better than the cold start option 10-W0. Moreover, note
that the strategies 10-W5 and 10-W6 start with the smallest ), i.e, at the right hand side of each cell, whereas

10-W4 starts with the largest A, i.e, on the left hand side of each cell.
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6 Conclusions

We have thouroughly investigated SVMs without offset term b that use the hinge loss and
Gaussian kernels. It turned out that these SVMs have convergence rates and classification
performance that are comparable to SVMs with offset, while the absence of the offset gives
more freedom in the algorithm design. In particular, we identified three areas, where this
additional freedom results in faster algorithms:

e Working set selection. In principle, an SMO-type solver for SVMs without offset
can update one variable at each iteration. However, we saw that this approach does
not lead to run times that were shorter than those of an SMO-type solver for SVMs
with offset. We then identified some selection methods for working sets of size two,
that modified the search for working sets of size one only very slightly. It further
turned out that these modifications decreased the number of iterations substantially,
and since updating the gradient and computing the stopping criterion for two variables
did not change the costs of an iteration dramatically, these modification also resulted
in a significantly shorter run time. It is further worth mentioning that the most
successful selection strategies for workings sets of size two were actually combinations
of a few such simple modifications. The reason for the latter was that some strategies
worked particularly well for large values of the regularization parameter A, while others
worked better for small values of A. The good combinations then contained both types
of strategies and identified the better one at each iteration automatically.

e Stopping criterion. Another improvement of the run time behavior of our algorithm
came from a new stopping criterion that has a clear justification from recent statistical
analysis of SVMs. This stopping criterion, which is essentially a relaxed duality gap,
never leads to more iterations than the classical duality gap stopping criterion, but
it often decreased the number of iterations. Moreover, its computational costs were
almost identical to those of the classical duality gap, and hence it often resulted in
shorter run times.

e Warm start initializations. SVMs without offset also allow more freedom in the
design of warm start initializations when the hyper-parameters are determined over
a grid of hyper-parameters. We investigated a couple of such initialization methods
and saw that some of them led to a substantially shorter run time. Moreover, by
comparing to some warm start initializations for SVMs with offset, we observed that
SVMs without offset benefit significantly more from such strategies.

In our experiments we only considered datasets for which the kernel matrix fit completely
in the RAM of a desktop computer. With present configurations of, say up to 8GB RAM,
this limits the data set size somewhere between 25,000 and 30,000 samples. While such
sizes are typically not considered to be extremely large, they already constitute a decent
challenge for existing off-the-shelf SVM software, if the training time is an issue. Moreover,
even for smaller data sets a fully automated hyper-parameter selection run for SVMs with
offset is, for some applications, too time intensive. Our new SVM solver yields a significant
reduction in time for medium-sized datasets, thus opening the applicability of SVMs to
such problem domains. However, it seems fair to say that although many data sets actually
fall in this range of size, some other applications demand processing substantially larger
data sets. So far, it remains unclear, how well our new solver performs for such data sets,

56



and since our experimental study was already quite extensive, we postpone this question to
future research.

Some other directions of future research include the following questions: a) Are there
cheap modifications of our 2D-working set selection strategy that identify working sets of
larger size for which the number of iterations and the run time is further reduced? ) Can
some of our ideas be used or modified for other SVMs, that, e.g., use different kernels and/or
loss functions? ¢) Can the run time of the solver be further improved by not only using
vectorization via SSE instructions but by also distributing tasks between different cores of
a modern processor?
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